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Alterations in primary freeze and fight-or-flight reactions in

animals have been associated with increased vulnerability to

develop anxious or aggressive symptomatology. Despite the

potential relevance of these primary defensive responses for

human stress-coping, they are still largely unexplored in

humans. The present paper reviews recent evidence

suggesting that individual differences in primary defensive

stress responses in humans are associated with individual

differences in anxiety and aggression. In addition, we discuss

(neuro)endocrine systems that may underlie increased freezing

and flight behavior in anxiety and increased fight tendencies in

aggression-related disorders. We conclude with a research

agenda for the study of human defensive stress-responses as

potential behavioral markers for stress-related disorders,

including anxiety and aggression.
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The defensive cascade of freeze and fight-or-flight (FFF)

responses plays a crucial role in the way various species

cope with threat. Freezing – a stage of attentive immo-

bility – is characterized by bodily immobility and heart

rate deceleration [1,2] which together allow for an active

preparation for optimal fight-or-flight actions (i.e., attack-

ing or avoiding the predator) [3��,4�,5]. Individual differ-

ences in animals’ freezing responses remain relatively

stable throughout development [6,7]. Research in rodents

and primates suggests that increased freezing and flight

behavior is associated with heightened stress susceptibil-

ity, increased activity in stress hormones (i.e., norepineph-

rine and cortisol; corticosterone in rodents) and stress-

related brain systems, as well as with maladaptive stress

coping later in life [6,8–10]. Therefore, increased freezing
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and flight reactions are considered an anxious inter-

mediate phenotype that – similar to the stable anxious

temperament of behavioral inhibition in humans [11] –

constitutes an important risk factor for the development

of anxiety-related phenotypes [8]. While anxiety is

associated with high cortisol and low testosterone con-

centrations [12–14], aggressive phenotypes have been

associated with high testosterone and low cortisol con-

centrations in animals [13–16]. So, in animal research

FFF responses and their association with symptomatol-

ogy are well established, in particular with anxiety-related

symptoms. However, despite their potential relevance for

human stress-coping and psychopathology, individual

differences in FFF tendencies remain largely unexplored

in human studies (see also Box 1) [17��]. The importance

of investigating human FFF tendencies has recently been

highlighted in the clinical context, where defensive

stress-responses were consistently observed in trauma-

tized patients [3��] and where freezing during trauma

exposure appeared to be predictive of the development of

posttraumatic stress disorder [18].

Accordingly, the aim of the present paper is to review the

literature on FFF tendencies in humans and their associ-

ation with anxiety and aggression-related symptomatol-

ogy. In addition, we discuss alterations in the steroid

hormones cortisol and testosterone that are associated

with both anxiety and aggression-related symptoms as

well as with altered FFF tendencies. Finally, we describe

future perspectives, and end with a research agenda to

advance insights into this emerging field of human defen-

sive stress-responses.

Freeze-fight-flight (FFF)
The expression of FFF tendencies is shaped by both the

sympathetic and parasympathetic branches of the auto-

nomic nervous system (ANS). During threat exposure

both the sympathetic and parasympathetic branches of

the ANS are activated. However, while sympathetic

dominance facilitates active fight-or-flight responses,

parasympathetic dominance facilitates freezing responses

by serving as a ‘break’ on the activated system [28].

Freezing is most likely to occur when the threat is still

at a distance [28,29]. It is thought to optimize the animal’s

attentional processes serving the selection and prepara-

tion of appropriate sympathetically dominated fight-or-

flight responses to cope with threat [5,30��,31]. Also in

humans, exposure to threat cues – like aversive pictures or

threat of shock – has been associated not only with

sympathetic activity such as pupil dilation and skin
www.sciencedirect.com
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Box 1 The value of assessing freeze-fight-flight (FFF) tendencies

in humans.

Traditionally, FFF tendencies were measured using self-report

questionnaires. Additional objective quantification of human FFF

tendencies may be promising for further advancement of insights in

human adaptive and maladaptive stress-responses:

� FFF responses to stress and their neuroendocrine mechanisms

can be conceptualized as intermediate phenotypes that help to

bridge the gap between genotypes and observable phenotypes

[8]. In general, intermediate phenotypes are more stable and more

heritable than subjective self-reports [19]. Although stability and

heritability of FFF tendencies still need to be determined for

humans, they have been demonstrated for several nonhuman

species [6,7,20,21].

� FFF responses to stress reflect dynamic changes to the environ-

ment and have been shown to be sensitive to contextual changes

and life events [22,23].

� Psychophysiological and behavioral indices of FFF tendencies can

be measured continuously by time scales ranging from millise-

conds to hours, thus allowing the study of the temporal dynamics

of freezing and fight-or-flight reactions at various time scales (HCM

Niermann et al., Submitted) [24].

� FFF tendencies capture unique variance in explaining social and

affective behaviors. For example, a behavioral measure of avoid-

ance was more sensitive in differentiating highly anxious indivi-

duals from non-anxious controls than a self-report measure

[25,26], and was better in predicting clinical treatment outcomes in

anxiety patients compared to self-reported pre-treatment anxiety

levels [27].

� FFF tendencies provide behavioral markers for the etiology of

social and affective symptoms in humans and nonhuman animals

[3��,8,18].
� Being able to objectively quantify FFF tendencies in humans gives

us the opportunity to benefit more directly from insights from

animal research where FFF tendencies are major outcome mea-

sures [17��], as well as to facilitate animal-to-human translational

research.
conductance [32,33], but also with heart rate deceleration

(which is one of the clearest indications of parasympa-

thetic dominance over sympathetic activity) [24,32,33].

Recent attempts to relate heart rate deceleration to

posturographic measures in humans showed that heart

rate deceleration in response to aversive pictures was

indeed associated with reductions in body sway measured

by using a stabilometric force platform [22,34,35�].

Using similar posturographic and electrocardiographic

methods, increased freezing was shown in participants

who were more anxious or had been previously trauma-

tized [22,35�]. In addition, a prospective study in adoles-

cents with a history of insecure infant-parent attachment

showed increased freezing at age 14 [36]. Another recent

study suggested that aggressive behavior is associated

with a specific freezing pattern: highly aggressive parti-

cipants (compared to participants with lower levels of

aggression) initially showed less freezing in response to

threatening opponents, whereas they showed more signs

of freezing shortly before they needed to initiate a fight

response [24]. Individual differences in bodily freezing

have also been shown to be related to instrumental
www.sciencedirect.com 
approach-avoidance decisions [37,38]: healthy individuals

with stronger freezing responses to angry faces showed an

avoidance bias during subsequent but unrelated instru-

mental approach-avoidance actions [37]. Interestingly,

aggressive delinquents with psychopathic traits showed

no such avoidance bias during instrumental actions,

implying reduced transfer of automatic FFF tendencies

to instrumental actions [38]. Together, these findings

suggest that humans, just like animals, show threat-

induced freezing behavior, that freezing affects more

complex instrumental behavior, and that individual dif-

ferences exist corresponding to decreased freezing in

aggression and increased freezing in anxiety.

Not only parasympathetically dominated freezing, but

also sympathetically dominated fight-or-flight reactions

have been differentially associated with anxiety and

aggression. Flight reactions can be seen as active avoid-

ance behavior aiming at preventing or minimizing contact

with an acute threatening cue or situation [39,40]. Avoid-

ance behavior has been recognized as one of the most

important maintenance factors in anxiety [41], hampering

fear extinction and even enhancing fear [41–44]. A useful

tool for objectively and implicitly assessing active avoid-

ance tendencies in humans is the approach-avoidance

task. In this task, participants either approach or avoid

appetitive and threatening stimuli (e.g., happy and angry

faces, respectively), using full body movements, or man-

ually using a handle or a joystick. Typically, participants

are faster to approach (than avoid) appetitive stimuli and

faster to avoid (than approach) threatening ones. Highly

socially anxious individuals avoided emotional faces more

strongly than neutral ones [25,45]. In a related study using

the same paradigm, higher vigilance ratings in patients

with posttraumatic stress disorder were associated with

stronger avoidance tendencies to trauma-related stimuli

[46]. Interestingly, on similar approach-avoidance tasks,

patients diagnosed with psychopathy showed an absence

of avoidance behavior to socially threatening stimuli [47]

and participants high on reactive aggression displayed an

approach tendency to fighting scenes [48]. Together,

these studies suggest that anxiety is associated with

increased freezing and flight tendencies, whereas aggres-

sion is associated with facilitated approach actions that

may signal fight tendencies [47,48].

Steroid regulation of anxiety and aggression
Activity in the hypothalamic–pituitary–gonadal (HPG)-

axis and the hypothalamic–pituitary–adrenal (HPA)-axis

and their respective steroid hormones testosterone and

cortisol (corticosterone in rodents) are important for the

regulation of social and emotional behavior in humans

and nonhuman animal species [13,49,50]. These endo-

crine axes have been shown to have mutually antagonistic

properties in animals [51]. Whereas socially submissive

(fearful and avoidant) behavior is typically associated with

elevated cortisol and low testosterone concentrations
Current Opinion in Behavioral Sciences 2017, 14:94–101
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[12–14], socially dominant and aggressive behavior has

been widely associated with elevated testosterone and

low cortisol concentrations in animals [13–16]. In humans,

individuals with high social anxiety also show high reac-

tive cortisol levels and low basal testosterone concentra-

tions [52–54], whereas aggressive and dominant individ-

uals show high basal testosterone and low basal cortisol

levels [55,56]. Hence, both anxiety and aggression-related

disorders seem to be featured by an HPA–HPG imbal-

ance, though in opposite directions (See Figure 1 for a

schematic representation).

Recent theories have added yet another factor contribut-

ing to the HPA–HPG imbalance in aggression: according

to the triple imbalance theory of reactive aggression [57],

the effects of a high testosterone–cortisol ratio that biases

the amygdala towards threat approach, are amplified by

reduced serotonin transmission. Low serotonin transmis-

sion is thought to be associated with reduced frontal

control over the amygdala, thereby increasing the risk

for aggressive outbursts [57,58��]. Although this theory

still needs to be tested in humans, there is indeed evi-

dence from genetic and pharmacological studies in

humans and animals suggesting that the relation between

steroid hormone function and social behavior varies as a

function of serotonin [59–61]. Accordingly, one could

argue that in anxiety disorders – also associated with

reduced serotonin transmission – reduced frontal control

over the amygdala could similarly amplify pre-potent
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Schematic presentation of the proposed relations between steroid

hormones, defensive stress-responses, and social and affective

psychopathology (i.e., anxiety and aggression): stressful life events

can interact throughout life with genetic factors to determine activity of

the hypothalamus–pituitary–adrenal-axis and the hypothalamus–

pituitary–gonadal-axis, resulting in the release of cortisol (C) and

testosterone (T), respectively. An imbalance in these steroid hormones

as well as genetic and environmental factors may affect the

expression of primary defensive freeze-fight-flight (FFF) responses to

stress, alterations which may contribute to social and affective

psychopathologies. More specifically, a steroid imbalance of high

cortisol and low testosterone may affect the expression of defensive

freezing and flight tendencies, potentially serving as an intermediate

phenotype for anxiety, whereas a steroid imbalance in the opposite

direction – low cortisol and high testosterone – may affect the

expression of fight tendencies, potentially serving as an intermediate

phenotype for aggression.
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action tendencies. In the case of anxiety, however,

reduced serotonin transmission would not amplify

approach, but rather avoidance behavior, thereby enhanc-

ing effects resulting from high cortisol and low testoster-

one levels on the amygdala [62�]. Indeed the short allele

of the serotonergic transporter gene (5-HTTLPR gene) –

a polymorphism that codes for reduced serotonin trans-

porter availability and reduced serotonin reuptake – has

been associated with reduced frontal–amygdala coupling

during exposure to emotional faces [63,64�], and

with increased risk of developing social and affective

psychopathologies – such as anxiety – particularly after

experiencing stressful life events [65]. Based on these

observations, we propose that it may be worthwhile for

future studies to investigate serotonin-steroid hormone

interactions, not only in relation to aggression, but also in

anxiety disorders.

Steroid regulation of freeze-fight-flight (FFF)
The HPA-axis plays a crucial role in the expression of

defensive freezing, which is supported by various phar-

macological studies in rodents. Stimulation as well as

blockage of the HPA-axis has been shown to respectively

increase or decrease rodents’ freezing behavior [66–68].

Furthermore, removal of the adrenal glands disrupted the

activity of the rodents’ HPA-axis and freezing responses,

while daily administration of corticosterone restored

adaptive freezing responses to threat in these same

rodents [69]. Although the association between freezing

and HPA-axis activity is well established in nonhuman

animal species [66–69], this association remains largely

unexplored in humans. The few existing studies are

suggestive of similar associations in humans, though:

Children’s increased freezing behavior in response to a

low-threat situation (a stranger approaches the child) has

been associated with both increased basal and reactive

cortisol levels [70��]. In a related study, decreased levels

of basal endogenous cortisol were recently found to be

associated with a specific freezing pattern in response to a

standardized stress induction procedure, such that indi-

viduals with lower levels of basal cortisol showed reduced

immediate stress-induced freezing as well as reduced

freezing recovery approximately 1 hour after acute stress

(HCM Niermann et al., Submitted). Interestingly,

reduced freezing recovery also acted as a mediator in

an indirect path going from lower basal cortisol via

reduced freezing recovery to increased levels of internal-

izing symptoms. This suggests that reduced freezing

recovery might serve as a potential marker for the etiology

of internalizing symptoms (HCM Niermann et al.,
Submitted).

Not only freezing but also avoidance and flight behavior

have been associated with HPA-axis activity. Stress-

induced cortisol as well as cortisol administration

enhanced avoidance behavior towards angry faces on

an approach-avoidance task in highly socially anxious
www.sciencedirect.com
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and avoidant individuals [54,71]. In contrast, testosterone

administration diminished threat avoidance tendencies

towards angry faces and promoted relative threat

approach tendencies towards angry faces in healthy con-

trols and in patients with social anxiety disorder [72,73].

Recent fMRI studies – using similar approach-avoidance

tasks with happy and angry faces – have shown that the

control over approach-avoidance tendencies crucially

involves the anterior prefrontal cortex (aPFC) and its

connections with the amygdala [64�,74]: the aPFC is

particularly active when people have to override their

action tendencies (i.e., in affect-incongruent conditions

where they are instructed to approach an angry face or to

avoid a happy face) [75]. Furthermore, elevated endoge-

nous testosterone levels have been associated with

reduced negative functional connectivity between the

aPFC and the amygdala when individuals had to control

their action tendencies (again, in affect-incongruent con-

ditions of the approach-avoidance task) [50]. The dynam-

ics of this prefrontal–amygdala crosstalk may be distorted

in individuals with social psychopathologies. For exam-

ple, individuals with psychopathy (compared to healthy

controls) showed reduced aPFC activity and less aPFC–

amydala coupling when controlling approach-avoidance

actions. This pattern was predominantly observed in

psychopaths with elevated levels of endogenous testos-

terone [76]. This set of studies is consistent with the idea

that a pattern of high testosterone and low cortisol is

associated with aggression-related phenotype (i.e.,
approach or fight behavior), whereas the opposite pattern

– low testosterone and high cortisol – is associated with

anxiety-related phenotype (i.e., avoidance or flight

behavior).

Interestingly, similar reductions in aPFC–amygdala con-

nectivity during approach-avoidance control have been

observed in short allele carriers (s-carriers) of the 5-

HTTLPR gene [64�]. When s-carriers had to exert con-

trol over their approach-avoidance action tendencies,

they showed increased amygdala activity in response to

emotional faces [64�], replicating previous studies

[65,77,78]. Most importantly, dynamic causal modeling

analyses indicated a decreased pattern of down-regulation

of the amygdala by the aPFC in s-carriers [64�]. In line

with the differential susceptibility hypothesis [79], such

an intermediate phenotype may form a risk marker for

poor control over approach-avoidance actions when the

system is challenged by adverse events: Several prospec-

tive longitudinal studies have indicated that s-carriers

have an increased risk of developing psychopathology

following the experience of adversity [80–82]. In addition,

both human and animal research shows that stressful

life events can have long-lasting effects on the activity

of the HPA and HPG-axes [83–86]. Together, these

results suggest that gene–environment interactions

may result in altered primary defensive responses and

the associated neuroendocrine patterns. These altered
www.sciencedirect.com 
primary defensive stress responses may in turn affect the

risk of developing psychopathologies (see Figure 1 for a

tentative model). Such a gene–environment interaction

model has often been proposed to explain complex

symptoms such as aggression and anxiety, with mixed

results [87–90]. On the basis of this review, we propose to

apply such a model to the intermediate phenotypes of

primary defensive reactions (FFF tendencies), which are

less complex and easier to objectively quantify compared

to complex symptomatologies. In addition, we propose to

investigate primary FFF tendencies in interaction with

steroid hormones.

Future perspectives
There is a great need for prospective longitudinal

research to investigate whether altered primary FFF

tendencies may indeed serve as an important risk marker

for psychopathology. These longitudinal investigations

should focus particularly on vulnerable groups (e.g., police

officers, firefighters, and adolescents) who have an

increased vulnerability for developing stress-related

behavioral problems such as anxiety and aggression.

Moreover, future research should investigate moderating

(e.g., genetic) and mediating (e.g., epigenetic) factors that

may explain the association between defensive stress-

responses and psychopathology. Our schematic presenta-

tion of some proposed relations (Figure 1) should not be

considered comprehensive, but is purely illustrative, to

guide future research towards factors that may contribute

to altered primary FFF responses. Individual differences

in serotonin-related genes might be a potential candidate

[63,64�,80–82] worth exploring, because the neurotrans-

mitter serotonin plays a crucial role in the regulation of

social and emotional processes [65]. However, catechol-

aminergic neurotransmitter systems (e.g., dopamine [91]

and norepinephrine [92]) as well as other hormones and

peptides (e.g., oxytocin [93��]) also play an important role

in social emotional and stress-systems and in the shift to

fight and flight behavior [93��]. Future research should

therefore investigate their role in FFF tendencies as well.

Future research is also needed to disentangle the complex

interplay between the HPA-axis and the HPG-axis in

relation to serotonin and anxiety/aggression. Although

known sex differences exist regarding the activity of

the HPA and HPG-axes and the occurrence of anxiety

and aggression, we suggest that the proposed relations

(Figure 1) can guide future research towards factors that

may be involved in the expression of FFF responses in

both sexes.

Finally, more research is needed to define and clarify the

precise role of freezing in the defensive cascade in

exposure to threat. Freezing is both classified as a stage

of action preparation and of risk assessment, potentially

being important for adequate decision making in
Current Opinion in Behavioral Sciences 2017, 14:94–101
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response to threat [24,30��]. As a result, freezing can be

qualified as an adaptive response. However, it has

recently been suggested that freezing-responses may

be impaired, for example, in clinical populations with

posttraumatic stress disorder (I Fragkaki et al., Submitted)

[94] and that immediate stress-induced freezing is not

related to internalizing symptoms but instead, reduced

freezing recovery is (HCM Niermann et al., Submitted).

Future research is needed to clarify and specify the

dynamics of adaptive freezing responses.

Conclusion
The reviewed literature suggests that FFF responses

combined with (neuro)endocrine stress-responses are

promising markers for the etiology of various social and

affective psychopathologies. Altered FFF responses may

represent a transdiagnostic intermediate phenotype

underlying several stress-related symptomatologies.

Increased freezing and flight behavior, as well as elevated

cortisol and reduced testosterone concentrations charac-

terize anxiety-related symptomatology [18,25,26,35�

,45,46,52–54,62�,71]. In contrast, increased fight tenden-

cies, as well as elevated testosterone and reduced cortisol

concentrations are associated with aggression-related

disorders [24,38,47,48,55–57,58��,76]. However, to date,

we have only just started to investigate the role of these

defensive stress-responses in human psychopathology.
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