
NeuroImage 185 (2019) 236–244
Contents lists available at ScienceDirect

NeuroImage

journal homepage: www.elsevier.com/locate/neuroimage
Time ambiguity during intertemporal decision-making is aversive,
impacting choice and neural value coding

Iris Ikink a,b,*, Jan B. Engelmann c, Wouter van den Bos d,e, Karin Roelofs a,b, Bernd Figner a,b,**

a Behavioural Science Institute, Radboud University Nijmegen, the Netherlands
b Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, the Netherlands
c University of Amsterdam, Amsterdam School of Economics (CREED) and Tinbergen Institute, Amsterdam, the Netherlands
d Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany
e University of Amsterdam, Department of Developmental Psychology, Amsterdam, the Netherlands
A R T I C L E I N F O

Keywords:
Ambiguity
Intertemporal choice
Decision-making
fMRI
Modeling
* Corresponding author. Montessorilaan 3, 6525,
** Corresponding author. Montessorilaan 3, 6525,

E-mail addresses: i.ikink@donders.ru.nl (I. Ikink

https://doi.org/10.1016/j.neuroimage.2018.10.008
Received 20 April 2018; Received in revised form
Available online 5 October 2018
1053-8119/© 2018 The Authors. Published by Else
A B S T R A C T

We are often presented with choices that differ in their more immediate versus future consequences. Interestingly,
in everyday-life, ambiguity about the exact timing of such consequences frequently occurs, yet it remains un-
known whether and how time-ambiguity influences decisions and their underlying neural correlates. We devel-
oped a novel intertemporal fMRI choice task in which participants make choices between sooner-smaller (SS)
versus later-larger (LL) monetary rewards with systematically varying levels of time-ambiguity. Across trials,
delay information of the SS, the LL, or both rewards was either exact (e.g., in 5 weeks), of low ambiguity (4 week
range: e.g., in 3–7 weeks), or of high ambiguity (8 week range: e.g., in 1–9 weeks). Choice behavior showed that
the majority of participants preferred options with exact delays over those with ambiguous delays, indicating
time-ambiguity aversion. Consistent with these results, the ventromedial prefrontal cortex showed decreased
activation during ambiguous versus exact trials. In contrast, intraparietal sulcus activation increased during
ambiguous versus exact trials. Furthermore, exploratory analyses suggest that more time-ambiguity averse par-
ticipants show more insula and dorsolateral prefrontal cortex activation during subjective value (SV)-coding of
ambiguous versus exact trials. Lastly, the best-fitting computational choice models indicate that ambiguity im-
pacts the SV of options via time perception or via an additive ambiguity-related penalty term. Together, these
results provide the first behavioral and neural signatures of time-ambiguity, pointing towards a unique profile that
is distinct from impatience. Since time-ambiguity is ubiquitous in real-life, it likely contributes to shortsighted
decisions above and beyond delay-discounting.
1. Introduction

In everyday life, decision-makers are often presented with choices
that differ in their more immediate versus future consequences. For
instance, would you prefer to have a relatively well-paying teaching job
now, or continue your research in a less well-paying post-doc position so
you can earnmoremoney later? These types of choices present a trade-off
between sooner-smaller (SS) versus later-larger (LL) rewards, with
decision-makers trading off anticipated benefits and/or costs of outcomes
that occur at different points in time (Kalenscher and Pennartz, 2008;
Scheres et al., 2013). Over the past decades, these choices have been
studied successfully using intertemporal choice tasks, which ask partic-
ipants to choose between two amounts, each delivered at an exact time
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point (e.g., €10 today vs. €15 in four weeks). It is relevant to advance
insight into the involved decision processes, as impatient choices in such
tasks have been linked to problematic health and social outcomes, as well
as clinical conditions associated with impulsivity (see e.g., Reynolds,
2006; Yoon et al., 2007; Mischel et al., 2011; Reimers et al., 2009;
Scheres et al., 2010).

Despite the success of these experimental paradigms, they have
overlooked one key feature until now: Real-life intertemporal choices are
rarely precise in the timing of their outcomes. Instead, they are typically
more or less ambiguous in terms of when a specific outcome would be
obtained. For example, we know that investment in our careers may pay-
off at some point in the future, but we do not know when exactly.
Furthermore, some real-life intertemporal choices lack a discrete
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moment of realization altogether (such as when considering the long-
term benefits of eating healthy, or saving for retirement). The term am-
biguity refers to a situation where a certain relevant choice characteristic
is partly or completely unknown (Ellsberg, 1961), such as—in this
case—the precise waiting time. To the best of our knowledge, no study to
date has directly investigated how time-ambiguity influences inter-
temporal decisions and the underlying neural processes.

In contrast, in the probability domain, ambiguity about probabilities
is well known to affect choice. Here, participants are typically asked to
choose between a safe option (e.g., €10 for sure) and a gamble. This type
of choices is called ‘risky choices’. In a typical study investigating
probability-ambiguity, participants might encounter two kinds of gam-
bles, related to two different forms of uncertainty: When the probability
of winning the gamble is known to participants (e.g., €15 with 50%
chance), we speak of risk, whereas when this probability is unknown or
only partly known (e.g., €15 with 20–80% chance) we speak of (proba-
bility-) ambiguity (Knight, 1921; Huettel et al., 2006). Thus, both risk
and probability-ambiguity entail uncertainty about the outcome, but
under risk the decision-maker can make an informed decision (having all
relevant information), while under ambiguity the decision-maker misses
some relevant information (Tymula et al., 2012).

Perhaps not too surprising, people typically show probability-
ambiguity aversion, preferring certain options and options with known
probabilities to options with unknown or partly unknown probabilities
(see, e.g., Ellsberg, 1961; Kahneman and Tversky, 1979). Ambiguity
preferences in the probability domain cannot be explained by risk pref-
erences, as the two are often found to be uncorrelated (Cohen et al.,
1985; Di Mauro and Maffioletti, 2004; van den Bos and Hertwig, 2017,
but see Chakravarty and Roy, 2009) and have an at least partly distinct
neural signature: A meta-analysis by Krain et al. (2006) identified
increased dorsolateral prefrontal cortex (dlPFC) and posterior parietal
cortex (PPC) activation under probability-ambiguity compared to risk,
both key nodes of the central executive control network (Seeley et al.,
2007). Possibly, the evaluation of ambiguous (compared to risky) choice
options requires more executive control (Platt and Huettel, 2008). Krain
et al.'s meta-analysis further identified decreased activation in the orbi-
tofrontal cortex (OFC) during probability-ambiguity compared to risk.
The OFC is commonly implicated in subjective value (SV) coding (Peters
and Büchel, 2010; Sescousse et al., 2013), thus likely representing the
decrease in SV under ambiguity. Finally, Krain et al.'s meta-analysis
identified largely overlapping frontal and parietal activations for
probability-ambiguity and risk. Similarly, Levy et al. (2009) found a
common system to encode SV under probability-ambiguity and risk,
making it plausible that we also find shared neural substrates across
time-ambiguous and time-exact trials.

Using research on probability-ambiguity as starting point, we devel-
oped a novel intertemporal choice task that systematically varied time-
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ambiguity across trials. On each trial, one or both of the presented op-
tions had an exact (e.g., 5 weeks from now) or ambiguous (e.g., 1–9
weeks from now) outcome timing (see Fig. 1). The level of time-
ambiguity was 4 or 8 weeks, added to the SS, the LL, or both options.
To gain further insight in how time-ambiguity impacts choice, we esti-
mated and formally compared different computational models and
measured neural signals using fMRI while participants made inter-
temporal choices in the presence and absence of varying levels of time-
ambiguity.

Based on work in the probability domain, we expected ambiguity-
aversion in the domain of intertemporal decisions. Specifically, we ex-
pected participants to prefer options with exact delays over those offering
ambiguous delays, and stronger time-ambiguity aversion for the larger (8
weeks) compared to the smaller (4 weeks) level of time-ambiguity. At the
neural level, we assumed that time-exact and time-ambiguous inter-
temporal choices likely share computational substrates. Accordingly, we
expected to find partly overlapping activations in frontal and parietal
regions (see Bartra et al., 2013; McClure et al., 2004). Importantly, given
the possible greater need of executive control processes for decisions
involving ambiguity (Platt and Huettel, 2008), we expected increased
activation in the dlPFC and PPC during time-ambiguous relative to
standard intertemporal decisions, whereas regions encoding SV (in
intertemporal choice: ventromedial prefrontal cortex (vmPFC), posterior
cingulate cortex (PCC), and ventral striatum (vStr); see Kable and
Glimcher, 2007; Bartra et al., 2013) were expected to show decreased
activation under time-ambiguity, reflecting the value-reduction. Lastly,
studies in the probability-domain found that individual differences in
ambiguity and risk preferences were associated with brain activity in SV,
executive control, and salience regions (respectively, the OFC, dlPFC, and
amygdala; Huettel et al., 2006; Hsu et al., 2005; Blankenstein et al.,
2017). Accordingly, we expected individual differences in
time-ambiguity preferences to be associated with brain activations in at
least some of these regions (i.e., more time-ambiguity averse participants
might show stronger decreases in SV-regions and stronger increases in
executive control and salience regions during time-ambiguous compared
to time-exact trials).

2. Materials and methods

2.1. Participants

Thirty right-handed males participated after providing informed
written consent. All participants had normal or corrected-to-normal
vision, no MRI contra-indications, and no history of brain surgery, as
indicated by self-report. Of the 30 participants, two were excluded
because they showed minimal variation in choices (0 and 3 LL choices,
respectively). Four more were excluded because our behavioral modeling
Fig. 1. The fMRI task. Participants first saw a
fixation cross, and then the choice options were
presented during which they had maximally 8 s to
indicate their choice. In each trial, there was
either no time-ambiguity (panel A), a time-exact
SS and a time-ambiguous LL (panel B), a time-
ambiguous SS and a time-exact LL, or both a
time-ambiguous SS and a time-ambiguous LL.
Time ambiguity was either 4 or 8 weeks. After
choosing an option, participants received visual
confirmation of their choice. If participants did
not respond within the predefined period of 8 s,
the message “Too late!” was displayed for 1.5 s
and the trial was counted as a miss. Following the
feedback, the next trial would start. Position of
the SS and LL (left/right) was randomized across
trials.
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(details below) indicated that we could not predict their choices signif-
icantly above chance level in the fMRI task. Thus, the final sample
included 24 males (18–34 years, Mage¼ 23.83).

Participants could choose to receive a flat-rate payment or course-
credits for participation. To make the fMRI task incentive-compatible,
participants were informed that they had a 10% chance that one of
their choices would be randomly selected (a payout scheme as recom-
mended by Charness et al., 2016) and the chosen option would be paid
out for real via bank transfer (time-exact option: on the indicated day;
time-ambiguous option: on a random time point within the specified
time-range).

2.2. Behavioral measures

Participants completed the Monetary Choice Questionnaire (MCQ;
Kirby et al., 1999) and an adaptive delay discounting task (ADDT;
adjusted from Luo et al., 2009) before they went into the scanner. This
was done to create two individualized indifference pairs between time--
exact SS and LL options for the fMRI task (details in supplementary ma-
terials (SM) Appendix A). We used individualized indifference
pairs—with non-ambiguous SS and LL options having equal subjective
value—to maximize our design's power to detect time-ambiguity effects.
That is, adding time-ambiguity to an option should have more impact on
choices if both exact options have equal value, compared to when par-
ticipants would prefer one exact option to the other. On average, our
approach resulted in participants having a slight preference for LL re-
wards during exact fMRI trials (Mp(LLchoice)¼ .58; p¼ .0002; binomial
test). However, across participants there was some variation (Q1¼ .443;
Q2¼ .643; Q3¼ .784), with several participants still showing a prefer-
ence for the SS or LL choice option. Since we assume that ambiguity will
affect choices most when the participant would be relatively indifferent
between the respective options without ambiguity, we think that the true
ambiguity effect might be underestimated for such participants. After the
scanning session, participants completed a 36-item standard inter-
temporal choice task with time-exact SS and LL rewards (see Figner et al.,
2010) to generate more trials for the modeling procedure.

2.3. fMRI task

The novel fMRI task1 was programmed with Presentation® software
(Neurobehavioral Systems, Inc., Berkeley, CA). Each trial showed a left
and right optionwith a timeline ranging from now to fivemonths (Fig. 1).
SS and LL magnitudes were constructed based on the two estimated
indifference pairs from the pre-scanning tests, with amounts jittered by
up to� €2 to create some variation across trials. Participants were
informed that exact delivery times of the SS and LL were always specified
by a red stripe on the timeline (for SS: 5 weeks from now, for LL: 15
weeks from now), but that in some trials (the ambiguous trials) exact
delivery times were hidden behind a box, thereby creating a range of
possible delivery times (design inspired by Levy et al., 2009). The range
of time-ambiguity was 4 or 8 weeks.

Midpoints of the delivery times were always the same (5 weeks for the
SS; 15 weeks for the LL). Thus, time-ambiguity on the SS resulted in an
ambiguous SS in 3–7 weeks (low ambiguity level) or 1–9 weeks (high
ambiguity level), and a time-ambiguous LL became 13–17 weeks or
11–19 weeks, respectively. Because of these equal midpoints, time-
ambiguity neutral participants should treat time-ambiguous and exact
trials the same, assuming that ambiguous delays have on average a de-
livery time around the midpoint of any given time range (this is some-
what of a simplification; see SM Figure A for more details). However, if
participants are time-ambiguity averse or -seeking, exact and ambiguous
trials should be treated differently.

We additionally included 44 matched-ambiguity trials, in which both
1 The design of the task was piloted behaviorally beforehand.
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options had identical amounts and midpoints, but one option had an
exact delivery time (e.g., €41.71 in 15 weeks), and the other option an
ambiguous delivery time (e.g., €41.71 in 13–17 weeks; SM Figure B). We
originally included these trials to get a clear neural ambiguity signal,
given that the other factors (amount, average time-of-delivery) remained
identical within a trial. However, behavioral analyses showed that par-
ticipants chose mostly ambiguity aversely during these trials, with little
to no variation in choices and significantly reduced response times
compared to all other trials. Although a preference for the unambiguous
option was expected, the extreme choice proportions and fast RTs gave
the trials limited use for imaging analyses and we therefore did not
further use them in our analyses (more details in SM Appendix B).

Altogether, the task consisted of 22 time-exact trials, 132 time-
ambiguous trials (22� 3 (time-ambiguity type: on SS, LL, or both) x 2
(time-ambiguity level: 4 or 8 weeks)), and 44 matched-ambiguity trials,
presented in four runs. On average, participants missed 1.33 trials
(SD¼ 2.96; with 32 missed trials in total; 0.67%), and mean RT was
2709ms (SD¼ 1355ms). RTs did not significantly differ between exact
and ambiguous trials (MEx¼ 2663ms, SDEx¼ 701ms, MAmb¼ 2724ms,
SDAmb¼ 688ms, paired t-test, p¼ .218).

2.4. Behavioral analyses

Choice data were analyzed with a generalized linear mixed-effects
model approach in R (R Core Team, 2013) using the mixed function of
the package afex (Singmann et al., 2017), which calls the glmer function
of the lme4 package (Bates et al., 2015). The dependent variable was
choice (SS or LL) on each trial. We used a maximal random-effects
structure with a participant-specific random intercept, random slopes
for all within-subject predictors of interest, and correlations among all
random effects (Barr et al., 2013). P values were determined using
Likelihood Ratio Tests (Barr et al., 2013), as implemented in afex' mixed
function. Continuous predictors were standardized and categorical pre-
dictors were sum-to-zero coded.

2.5. Behavioral modeling

To explore how time-ambiguity might influence SV-computations, we
developed several novel discounting model candidates. Specifically, we
built on the standard hyperbolic discounting model (Mazur, 1987):

SV ¼ OV
1þ k*D

(1)

where SV is subjective value, OV is objective monetary amount, k is
discount rate, and D is delay. The parameter k quantifies the level of
discounting, with k¼ 0 indicating no delay discounting and higher
values indicating steeper discounting (impatience). We implemented a
logistic choice rule that assumes that the probability of choosing the LL-
option (PrLLchoice) is a function of the options' SV-difference:

Pr LLchoice ¼ 1
1þ e�θ*ðSVLL�SVSSÞ (2)

where θ is a parameter that accounts for choice stochasticity. Higher
values of θ indicate greater consistency (i.e., less noise) in participants'
choices.

In total, we generated and tested 16 different computational models
that describe how time-ambiguity preferences might influence choice via
the value function (Eq. (1)), the choice rule (Eq. (2)), or both. We had
three main types of models: Ambiguity influencing SV via (i) influencing
how the time of delivery is estimated, (ii) an additive ambiguity bonus or
penalty, or (iii) ambiguity influencing the noise term in the choice rule.
Appendix C in the SM provides more details on the different models;
Table A in the SM states all formulas and model-fits. The modeling results
indicated that the two best-fitting models showed a comparably good fit
to the behavioral data (as indicated by the two lowest BIC values; see



Table 1
Overview of the 2 best-fitting models and the standard hyperbolic discounting
model in terms of mean BIC (lower values indicate better fit) and mean Accuracy
(proportion accurately predicted choices in the fMRI task; higher values indicate
better fit), with N¼ 24.

BIC Accuracy

Additive model 226.9248 .8155
Time perception model 227.1083 .8197
Standard discounting model 236.7281 .7906
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Table 1); thus we report results for both. Both models incorporate two
separate time-ambiguity preference parameters, namely βSV and βnoise,
affecting the value function and choice rule, respectively.

In model 1, the time perception model, time-ambiguity influences SV by
influencing the perception of delay D:

SV ðtime perception modelÞ ¼ OV
1þ k � ðDþ βsv � AÞ (3)

where βSV is the time-ambiguity preference and A the time-ambiguity
level (0 for exact trials). D was the midpoint of ambiguous delays, thus
βSV-values of 0 indicate ambiguity neutrality, βSV-values > 0 indicate
ambiguity aversion (i.e., subjective delays longer than the delay
midpoint), and βSV-values< 0 indicate ambiguity seeking (i.e., subjective
delays shorter than the delay midpoint). Mean βSV was significantly
above 0, indicating time-ambiguity aversion (p¼ .007 with M¼ 0.353;
one-sample Wilcoxon-test).

In model 2, the additive model, time-ambiguity influences SV via a
component that is added to the hyperbolically discounted value (i.e., a
bonus or penalty, depending on whether the participant is ambiguity-
seeking or -averse):

SV ðadditive modelÞ ¼ OV
1þ k � D � βsv � A (4)

Mean βSV was again significantly higher than 0, indicating time-
ambiguity aversion (p¼ .015 with M¼ 8.312; one-sample Wilcoxon-
test).

The second time-ambiguity parameter, βnoise, was the same in both
models: βnoise interacted with θ in the logistic choice function when time-
ambiguity was present:

PrLLchoice ¼ 1
1þ e�θ*βnoise*ðSVLL�SVssÞ (5)

Here, βnoise-values of 1 indicate neutrality (i.e., not affecting θ),
whereas βnoise-values< 1 indicate that participants become less consis-
tent (i.e., noisier) with time-ambiguity present, and βnoise-values> 1
indicate that participants become more consistent. Interestingly, mean
βnoise was significantly higher than 1 in both models (time perception
model: p¼ .0002 with Mβnoise¼ 2.392; additive model: p¼ .0004 with
Mβnoise¼ 2.448; one-sample Wilcoxon-tests), indicating that time-
ambiguity made participants less noisy. This is perhaps not too surpris-
ing given that we used indifference pairs: When adding ambiguity to one
option, this might make choice easier (and thus less stochastic or noisy)
as subjective values between the two options differ more compared to
when both options are exact and of equal subjective value.

Interestingly, estimated discount rates k and βSV parameters within
each model showed quite some variability and were not significantly
correlated (r¼�0.13, p¼ .554 for the time perception model; r¼ 0.20,
p¼ .345 for the additive model; Spearman rank-order correlations given
the non-normal distributions. For other correlations between estimated
parameters, see SM Appendix D and Table C). This suggests that there
might be no strong association between participants’ level of discounting
and their time-ambiguity preference. Because these parameter estimates
were both variable and uncorrelated, we decided to include them in the
fMRI analysis. Most importantly, these models and estimated parameters
enabled us to generate a SV-predictor for the fMRI models. At a more
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exploratory level, it allowed us to investigate brain-behavior associations
with time-ambiguity and discounting preferences, and to further arbi-
trate between the models. For more details on and results of these
exploratory analyses, see SM Appendix E, Figure C, and Tables D and E.

2.6. fMRI data acquisition

fMRI images were collected using a 1.5T Siemens AvantoMRI scanner
with a 32-channel coil. Functional scans were acquired using a multi-
echo GRAPPA MR sequence (TR¼ 2330ms; TEs[5]¼ 9.3, 20.9, 33, 44,
and 56ms; flip angle¼ 90�; 37 transversal slices; 3�3x3mm voxels;
FOV¼ 192mm; Poser et al., 2006) in four separate runs. Before the first
functional run, 30 volumes (prescans) were collected while participants
viewed a countdown from 30 to 0 on the screen. After the functional runs,
high-resolution structural T1-weighted images were acquired
(TR¼ 2250ms; TE: 2.95ms; 176 sagittal slices, 1� 1x1mm voxels,
FoV¼ 256mm).

2.7. fMRI preprocessing and analysis

Imaging data were pre-processed and analyzed using the Matlab
toolbox SPM12 (Wellcome Department of Imaging Neuroscience, Lon-
don, UK). We used a standard preprocessing approach (details in SM
Appendix F). The fMRI time series of each participant were analyzed
using an event-related approach in the context of the general linear
model (GLM).

As regressors of interest we included exact trials (Ex), ambiguity on
SS, ambiguity on LL, and ambiguity on both. The regressors were
modeled using canonical hemodynamic response functions temporally
aligned with the onset of the events of interest. To best capture the de-
cision period, minimize distortions due to time on task effects, and
implicitly account for choice latencies, we modeled decisions from trial
onset until the button press indicating choice using a boxcar with length
RT (variable epoch model; Grinband et al., 2006; Yarkoni et al., 2009).
The fixation cross commencing each trial (displayed for three to 10 s,
with MITI¼ 4.95s) served as jitter to dissociate trials and was not
explicitly modeled, thus serving as null event per trial (176% of time
relative to explicitly modeled decision events). Time and dispersion de-
rivatives were added to account for subject-to-subject and voxel-to-voxel
variation in response peak and dispersion (Henson et al., 2001). As
parametric modulator we included the subjective value of the chosen
option (SVChosenOption), calculated by transforming the objective value of
the chosen option on each trial to the subjective value using
participant-specific parameter estimates. We did this once for the time
perception model and once for the additive model (SV-formulas (3) and
(4), respectively), as these were our winning behavioral models. Thus, we
ran two separate GLMs, the “time perception GLM” for the time
perception model, and the “additive GLM” for the additive model, which
differed in their SVChosenOption-values (as well as their individual k and βSV
covariate-values at the second level; see also below). In both models,
separate regressors of no interest included trials in which no decision was
recorded, feedback after each trial, matched-ambiguity trials (see SM
Appendix B), as well as six movement parameters (estimated with the
spatial realignment procedure) to account for residual head-movement
related effects. Finally, the fMRI time series were high-pass filtered
(cut-off 120 Hz).

When estimating contrasts of interest, we collapsed across the 3
separate ambiguity regressors (ambiguity on SS, LL, and both) to create
an overall ambiguity contrast (Amb). We did this, as the behavioral re-
sults indicated no differences between ambiguity on SS, LL, and both,
making us mainly interested in contrasting exact (Ex) versus ambiguous
(Amb) trials. Contrast images of the effects of interest (Amb versus Ex;
SVAmb versus SVEx, the latter representing SVChosenOption during ambig-
uous versus exact trials) were then generated per participant. Individual
values of parameters k (discount rate) and βSV (time-ambiguity prefer-
ence) were included as covariates of interest at the second level



Fig. 2. Proportion of LL choices for each of the 7 different combinations of exact
and ambiguous timing information of the SS and LL choice options.
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(separately for the time perception and additive GLM). Using the grey
matter mask from the tpm folder in SPM12 (with a cutoff of P> .15), we
then carried out simple t-tests. Results were family-wise error (FWE)
cluster-corrected (pFWE< .05), with a primary voxel-wise threshold of
p< .001. However, to not miss any possible relevant activation, we re-ran
the analysis using a more liberal primary voxel-wise threshold of 0.005
instead of 0.001 (still with pFWE< .05). We call these latter results
exploratory. Furthermore, to check the robustness of any modulatory
effects, we carried out Iteratively Reweighted Least Square (IRLS) robust
regression analyses that reduce the influence of potential outliers (Wager
et al., 2005).

3. Results

3.1. Behavior

First, we tested whether the presence versus absence of time-
ambiguity on SS or LL options had an effect on choice. The dependent
variable was choice (0¼ SS; 1¼ LL), and the predictors were time-
ambiguity on the SS (yes (collapsed across 4 and 8 weeks)/no), time-
ambiguity on the LL (yes (collapsed across 4 and 8 weeks)/no), reward
magnitude (high/low; the 2 indifference pairs consisted of a fixed LL of
€100 or €50, see also SM Appendix A), participants' mean k-value from
the pre-scanner tasks (as indicator of participants’ discounting steepness;
continuous), all possible 2-way interactions with time-ambiguity on the
SS or on the LL, as well as the 2-way interaction between time-ambiguity
on the SS and on the LL. We added the k-value predictor (1) to control for
individual differences in patience, and (2) to investigate whether more
patient participants would be less affected by time-ambiguity. We added
as control variables of no interest run number (continuous) and SS po-
sition on the screen (left/right).

Time-ambiguity on the LL was significant (χ (1)¼ 5.84, p¼ .016) and
time-ambiguity on the SS showed a trend for significance (χ2 (1)¼ 2.98,
p¼ .085). As expected, presence of time-ambiguity on the LL decreased
LL choice (i.e., the LL became less attractive; Fig. 2). Similarly, presence
of time-ambiguity on the SS increased LL choice (i.e., the SS became less
attractive) although only marginally significantly so. Both effects indi-
cate that on average participants exhibited time-ambiguity aversion. The
interaction between time-ambiguity on the SS and LL.was not significant
(p¼ .704), thus the effect of ambiguity on one choice option did not
differ dependent on whether the other choice option was ambiguous or
not.

The effect of individuals' k-value was significant (χ2 (1)¼ 4.86,
p¼ .028): More impatient participants (higher k-values) chose the LL less
2 There was one marginally significant interaction, namely between time-
ambiguity on the LL and reward magnitude (χ2 (1)¼ 3.21, p¼ .073), such
that the effect of time-ambiguity on the LL was bigger for small than large
magnitudes, possibly related to the magnitude effect in intertemporal choice
(Prelec and Loewenstein, 1991).
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often (confirming discount rates to be relevant, even in the context of
using indifference pairs). Reward magnitude was not significant; neither
were run number and SS-position (all ps> .37). None of the interactions
were significant (all ps> .13)2.

To test whether the level of time-ambiguity (4 or 8 weeks) mattered
for choice, we constructed a separate model on a subset of the data (only
ambiguous trials). We kept the same model structure in terms of factors
and interactions, except that the two factors ambiguity on SS and on LL
were replaced with (i) one factor coding whether ambiguity was on the
SS, the LL, or both, and (ii) one factor coding for ambiguity level (4
weeks/8 weeks). These analyses revealed no main effect of ambiguity
level (p¼ .373), but an interaction effect between time-ambiguity level
and mean k-value (χ2 (1)¼ 5.94, p¼ .015), indicating that more patient
participants did not differentiate between 4 and 8 weeks of time-
ambiguity, whereas impatient participants did. This seems consistent
with the idea that more patient participants would be less affected by
time-ambiguity, or in this case, the level of time-ambiguity. Furthermore,
time-ambiguity effects on SS, LL, or both did not differ as a function of
ambiguity level (p¼ .634). For a complete overview of these behavioral
results, see SM Appendix G.

3.2. Neuroimaging results

The main goal of the neuroimaging analyses was to identify (1)
common and (2) distinct neural substrates during trials with and without
time-ambiguity. As the behavioral data provided almost identically good
fits for two different computational value models, we ran and compared
the results from two GLMs that were identical except that they differed in
(a) how the parametric modulator SVChosenOption was modeled (according
to the time perception or additive model), and (b) the individually esti-
mated time-ambiguity and discounting preferences per (time perception
or additive) model, which were entered as covariates. This resulted in
what we call the time perception GLM and the additive GLM, respectively.
Both GLM results were mainly identical. Since the additive model pro-
vided a slightly better behavioral fit and showedmore robust modulatory
effects in our exploratory analyses, we report results of the additive
model in the main text, while results of the time perception model are
presented in SM Tables E, F I, and J.

3.2.1. General intertemporal choice-related (de-)activations in dlPFC, PCC,
and vmPFC

Given that intertemporal choices with and without time-ambiguity
likely share common neural substrates, we first tested which regions
show choice-related activity in trials with and without time-ambiguity
(i.e., identifying common neural substrates). Thus, we performed a
conjunction analysis under the conjunction null hypothesis, requiring
that all comparisons in the conjunction are individually significant
(Nichols et al., 2005). This analysis revealed largely overlapping acti-
vations for both types of trials in regions previously implicated in inter-
temporal choice (Bartra et al., 2013; Kable and Glimcher, 2007; McClure
et al., 2004): Shared increased activation was found in a large cluster
consisting of occipital and parietal cortex, as well as bilateral dlPFC and
inferior frontal gyrus (IFG). Shared decreases in activation were found in
PCC, left vmPFC, anterior cingulate cortex (ACC), and bilateral temporal
regions (Fig. 3; Table 2; for results of the time perception GLM, see SM
Table F). All these regions are commonly implicated in executive control,
salience processing, and valuation.

3.2.2. Ambiguity-specific modulation of choice-related neural activity in IPS
and vmPFC

Next, we tested which brain regions showed differential activations as
a function of the presence versus absence of time-ambiguity (i.e., iden-
tifying distinct neural substrates). The right intraparietal sulcus (IPS)
showed significantly increased activation during time-ambiguous
compared to time-exact trials (Fig. 4; Table 3). The IPS is part of the
PPC, where increased activation for probability-ambiguous versus risky



Fig. 3. (A) Activations and (B) deactivations common to intertemporal de-
cisions involving time-exact and time-ambiguous choice options based on a
conjunction analysis for the contrast [exact and ambiguous trials versus fixa-
tion]. Results were FWE cluster-corrected with a primary voxel-wise threshold
of p< .001. Here neural responses for the additive GLM are shown; those of the
time perception GLM were virtually identical.

Table 2
Results of the conjunction analysis, showing intertemporal choice-related acti-
vations and deactivations during time-exact and time-ambiguous trials for the
additive GLM, thresholded at punc< .001. All these regions were also found in the
time perception GLM.

Contrast pFWE-cor.

cluster
MNI coordinates Peak

Z-
value

Cluster
size

Brain region x y z

Ex AND Amb> fixation
Occipital/parietal
cortex

<.0001 15 �94 �1 7.42 4379

Cerebellum .052 �3 �73 �25 5.45 47
SMA .001 �3 8 53 5.21 109
R dlPFC .01 48 38 17 5.12 70
L dlPFC .038 �45 32 23 4.01 51
R IFG .022 48 11 26 5.11 59
L IFG .009 �45 5 35 4.76 72

Ex AND Amb< fixation
L Middle/Superior

TG
<.0001 �57 �61 8 5.40 212

R Middle/Superior
TG

<.0001 51 �52 23 5.26 386

PCC <.0001 3 �46 20 4.42 120
Dorsal PCC .003 0 �25 47 4.74 88
L ACC/vmPFC/

aPFC
<.0001 �24 44 35 4.60 523

L Superior TG .001 �51 �34 20 5.06 103
R Somatosensory

cortex
.014 21 �40 59 4.50 65

Posterior fronto-
median cortex

.036 27 35 50 3.76 52

Abbreviations: Ex, exact trials; Amb, time-ambiguous trials; L, left; R, right; SMA,
supplemental motor area; TG, temporal gyrus; aPFC, anterior prefrontal cortex.
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choices (Krain et al., 2006) and uncertainty (Platt and Huettel, 2008) has
been found. No significant deactivations were observed. To avoidmissing
any possible relevant (de)-activations we re-ran the model with a more
liberal threshold (FWE-corrected clusters still at< 0.05, but a primary
voxel-wise threshold of 0.005 instead of 0.001) and found significant
decreased activation in the left vmPFC during time-ambiguous compared
to time-exact trials (Fig. 4; Table 3). This exploratory result is consistent
with the idea of reduced subjective value during time-ambiguous
compared to time-exact trials.
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3.2.3. Associations between time-ambiguity preferences and subjective-value
coding in dlPFC and insula

Lastly, we tested whether SV-encoding of the chosen option might
differ between time-exact versus time-ambiguous trials. We did not
observe any significant differences in any region (also not with our
exploratory threshold). This is consistent with results from Levy et al.
(2009), who found no SV-differences during exact and
probability-ambiguous risky gambles. However, in our exploratory
brain-behavior analyses, we found that more ambiguity averse partici-
pants showed (among other regions) more activity in the right dlPFC and
left insula during SV-encoding of the chosen option in ambiguous
compared to exact trials. These modulations were found in the additive
GLM but not the time perception GLM, and can thus be seen as tentative
evidence differentiating between the two GLMs (details in SM Appendix
E; Figure C and Tables D and E).

4. Discussion

The current study investigated what we call time-ambiguity: uncer-
tainty about when an outcome will be received. Using a novel task
paradigm that incorporates time-exact and time-ambiguous inter-
temporal choice trials, we found converging evidence for time-ambiguity
aversion, reflected at the behavioral, computational, and neural level. We
showed that (1) participants on average display time-ambiguity aversion,
as they chose options with ambiguous delays less often compared to
options with exact delays, (2) accounting for time-ambiguity improves
computational choice models, and the estimated mean ambiguity
parameter βSV confirms that the subjective value of choice options de-
creases as a function of time-ambiguity, and (3), in addition to a shared
general network consisting of vmPFC, PCC and dlPFC, time-ambiguity
has unique neural correlates as evidenced by increased IPS and
decreased vmPFC activation, as well as modulatory effects in dlPFC and
insula (but note: the modulatory results should be treated as tentative).

Disliking, and thus avoiding or trying to minimize time-ambiguity is
consistent with the more general literature on uncertainty (see e.g.,
Clark, 2013; van den Bos and Hertwig, 2017; Blankenstein et al., 2017).
Within this literature, it is particularly relevant to compare our findings
to those in risky choice, where people typically show
probability-ambiguity aversion (Ellsberg, 1961; Kahneman and Tversky,
1979; Tymula et al., 2012). Consistent with findings in that field, we
establish the existence of ambiguity aversion in the time domain. Inter-
estingly, the time-ambiguity level (4 versus 8 weeks) did not matter in
our study – or more precisely, it mattered only to impatient participants –
whereas in risky choice research ambiguity-level effects are typically
reported (Hsu et al., 2005; Tymula et al., 2012; van den Bos and Hertwig,
2017). Possibly, in the time domain purely the presence or absence of
ambiguity matters and less so the extent; alternatively, however, our
ambiguity levels may have been too similar. Regarding possible under-
lying mechanisms, the additive model slightly outperformed the time
perception model, even though the latter is conceptually more similar to
the commonly used probability-ambiguity model by Gilboa and
Schmeidler (1989). This suggests that in probability-ambiguity research,
it might also be interesting to investigate an additive model. Lastly,
similar to risk and probability-ambiguity preferences being uncorrelated
(Cohen et al., 1985; Di Mauro and Maffioletti, 2004; van den Bos and
Hertwig, 2017), individuals' discount rate and time-ambiguity preference
were uncorrelated in our sample, suggesting that delay discounting and
time-ambiguity aversion might be distinct phenomena, reflecting
different psychological mechanisms.

Such a dissociation would be an important result, because real-life
intertemporal choices often have time-ambiguity, yet existing task par-
adigms have not incorporated it, to the best of our knowledge. Including
time-ambiguity in intertemporal choice paradigms promises to give us
better insights into real-world impatient, impulsive, and shortsighted
choices and behaviors, and might also increase the ecological and pre-
dictive validity of these tasks. Furthermore, research and interventions



Fig. 4. Brain regions identified in the contrast [Amb versus Ex]. (A) Right IPS showed significantly increased activation during time-ambiguous compared to time-
exact trials, while (B) left vmPFC showed significantly decreased activation. Both results were FWE cluster-corrected, but with a primary voxel-wise threshold of
p< .001 for the IPS and p< .005 for the vmPFC. Neural responses for the additive GLM are shown; those of the time perception GLM were virtually identical.

Table 3
Significant results of the contrasts of interest for the additive GLM, thresholded at
punc< .005. Both regions were also found in the time perception GLM.

Contrast pFWE-cor.

cluster
MNI coordinates Peak

Z-
value

Cluster
size

Brain region x y z

Amb> Ex
R Intraparietal

sulcus*
<.0001 24 �52 53 4.48 341

Amb< Ex
L vmPFC .008 �9 65 2 3.47 136

Note: * means this region was also significant with a primary voxel-wise
threshold of p< .001. Abbreviations: Ex, exact trials; Amb, time-ambiguous tri-
als; L, left; R, right.
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on adolescent risk-taking and impulsivity, health behaviors, addictions,
and disorders with an impulse-control component such as ADHD or
gambling (van den Bos and Hertwig, 2017; Reynolds, 2006; Yoon et al.,
2007; Mischel et al., 2011; Reimers et al., 2009; Scheres et al., 2010)
might also benefit. Time-ambiguity is ubiquitous in real-life and likely
contributes to shortsighted decisions beyond simple delay discounting.
Thus, insight into alterations in time-ambiguity processing in addictions
and impulsive disorders could provide starting points for better-tailored
and more effective interventions.

Our approach to estimate and compare competing computational SV-
models also led to several insights. First, including the level of time-
ambiguity improved model-fit (compared to including only the pres-
ence/absence of ambiguity), even though time-ambiguity level did not
show a significant main effect in the behavioral analysis. While future
work should clarify this point, including ambiguity levels may have
resulted in more variation in our (otherwise rather similar) SV-
estimations and hence better model-fits. Second, time-ambiguity seems
to influence the consistency of participants’ choices, as both winning
computational models include a time-ambiguity parameter that interacts
with noise parameter θ (although the increased consistency may be
related and/or specific to our use of indifference pairs). Finally, a single
time-ambiguity parameter could capture time-ambiguity effects across
different delay midpoints (models with separate ambiguity-parameters
for SS and LL-rewards did not improve model-fit). This is similar to k
being able to account for different delays, making βSV a likewise gener-
alizable parameter.
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Although we could not clearly distinguish whether ambiguity in-
fluences SV via a simple penalty or via influencing time perception
(though our exploratory neural results seem to suggest the former), one
difference between the models is that in the additive model, the effect of
time-ambiguity on SV is constant across all delays, whereas it is time-
dependent in the time perception model (with less impact for longer
delays). Thus, future research should try to differentiate the two models
by creating trials for which the models generate differential predictions,
e.g., by using a wider range of delay midpoints. Further, using trials with
and without indifference pairs andmore strongly varying time-ambiguity
levels might clarify whether the increased consistency under ambiguous
trials that we observed is due to our use of indifference pairs, and
whether the sole presence versus absence or level of time-ambiguity in-
fluences choice, respectively.

With regard to the neural correlates, choice-related activation during
both the absence and presence of time-ambiguity was found in a network
of brain regions commonly associated with intertemporal choices and
decision-making (Bartra et al., 2013; Kable and Glimcher, 2007; McClure
et al., 2004). Importantly, IPS and vmPFC activation was specifically
modulated by the presence versus absence of ambiguous choice options.
The right IPS showed increased activation during trials with (compared
to without) time-ambiguity, consistent with probability-ambiguity re-
sults from a meta-analysis (Krain et al., 2006). The increased IPS acti-
vation might reflect an increased demand for executive control processes
to evaluate or resolve the uncertainty present in time-ambiguous trials
(Platt and Huettel, 2008). The increased complexity of our computational
choice models seems to converge with this interpretation; however we
did not find longer response times for ambiguous trials. Further, we
observed reduced vmPFC activation during ambiguous compared to
exact trials. Although this result was obtained at an exploratory
threshold, it nonetheless informs the potential neural effects of
time-ambiguous decision contexts. The reduction in choice-related ac-
tivity in vmPFC during ambiguous compared to exact trials could indicate
different processes. First, it could reflect the on average lower SV during
trials with ambiguous choice-options, given the well-documented role of
the vmPFC in SV-computations (Bartra et al., 2013; Peters and Büchel,
2010) and the time-ambiguity aversion that participants generally
showed. Potentially inconsistent with this explanation, however, is that
we did not find ambiguity-related modulation of SV-tracking in this re-
gion. This might be related to our use of indifference pairs, which may
have resulted in few value differences and, accordingly, little opportunity
to track variations in SV. Second, the reduced vmPFC activation may
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reflect difficulties in properly estimating SV in the absence of sufficient
information, thereby leading to a reduction in activity combined with no
evidence of value tracking in vmPFC under conditions of ambiguity.
Third, given that ambiguity has been shown to trigger aversive affect in
risky choice paradigms (Hsu et al., 2005) and given that our result is
reminiscent of a recent study showing suppressed vmPFC activity and
reduced value tracking under conditions of incidental negative affect
(Engelmann et al., 2015), the current results could reflect the effects of
negative affect in the presence of ambiguous outcomes. While we cannot
empirically decide between these possible explanations, we currently
favor the first explanation (i.e., the decrease in vmPFC activation under
ambiguity represents the reduced SV of ambiguous choice-options),
based on the consistent implication of the vmPFC in SV-coding (Levy
and Glimcher, 2012; Bartra et al., 2013; Peters and Büchel, 2010).
However, future research is required to disentangle the relative contri-
butions of SV-coding and other cognitive and emotional mechanisms in
the context of decisions involving time-ambiguity.

The absence of differential SV-correlates for exact and time-
ambiguous trials is consistent with Levy et al.'s (2009) results in
probability-ambiguity, suggesting a common system to encode SV under
time-exact and time-ambiguous trials. This seems in line with the idea of
a ‘common currency’ of SV under different conditions: Across multiple
reward types – including delayed and probabilistic monetary rewards,
but also across primary and social rewards – SV has been found to be
represented in the vmPFC, OFC, and (v)Str (Levy and Glimcher, 2012;
Peters and Büchel, 2009; Bartra et al., 2013). Alternatively (and as
already mentioned), the absence of differential SV-correlates may be
related to be our use of indifference pairs. Interestingly, both the SV–
and choice-related activations for time-ambiguity seem to show some
overlap with findings in probability-ambiguity. Thus, future research
could perhaps investigate the similarities and differences in underlying
neural mechanisms by directly comparing exact and ambiguous risky
choices to exact and ambiguous intertemporal choices.

Lastly, we observed SV-modulations of neural activity as a function of
individual ambiguity preferences in the additive GLM but not the time
perception GLM. Thus, at the neural level, the additive model seems to
outperform the time perception model (but note that these results should
be treated as tentative and interpreted with caution given our rather
small sample size): More ambiguity-averse participants showed more
activation in, e.g., the insula and dlPFC during SV-encoding of ambiguous
compared to exact trials, as if SV-encoding during ambiguous trials
became more salient (insula; Uddin, 2015) and required more executive
control (dlPFC; Platt and Huettel, 2008; Niendam et al., 2012).

While future work needs to establish whether these results are
reliable, it is tempting to point out that they are somewhat similar to
findings in risky choice research, where activation in the dlPFC and
amygdala, the latter another salience region, was modulated by risk and
probability-ambiguity preferences (Hsu et al., 2005; Huettel et al.,
2006; Blankenstein et al., 2017). Thus, one speculative interpretation of
these results is that resolving ambiguity might occur at an executive
control level and that the decision maker's ambiguity preference in-
fluences how much relevance and executive control processes are
allocated to resolve the ambiguity. If so, this might explain why indi-
vidual differences in ambiguity preferences are less apparent in valu-
ation regions, as these regions might reflect the resulting computed SV
more so than the actual computations (and individual differences
therein) that lead to this value.

Some interpretational issues should be discussed. First, we used
indifference pairs: While we deliberatively did this to maximize power to
detect time-ambiguity effects, it also restricted SV-variation and thus
complicated the computational modeling and SV-analysis. Future work
might benefit from using a wider range of different stimuli to increase
variation in SV. Second, future studies should increase the variation in
time-ambiguity levels, to shed light on whether purely the presence/
absence of time-ambiguity matters or whether there might be a more
gradual dose-response relationship of time-ambiguity effects on SV and
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choice. Third, we had many more time-ambiguous than time-exact trials.
Although this was on purpose (having more variation in both the amount
of time-ambiguity and on which option, with the possibility to investi-
gate each level separately), we ultimately decided to collapse across these
ambiguity levels based on the behavioral results. Future studies should
try to incorporate more similar numbers of trials, and perhaps rather use
parametric modulators to systematically vary time-ambiguity. Finally,
our most important constraint is our limited sample size. Future studies
should increase sample size and attempt to replicate these findings, both
at the behavioral and neural level. After all, the current study was
essentially a first foray to reveal whether time-ambiguity aversion exists
at all and how this might be implemented psychologically and in the
brain. We hope that it inspires future research into what we think is a
promising and relevant topic.

To conclude, the current study established the existence of ambiguity
aversion in the time domain. To our knowledge, this is the first study to
have demonstrated this phenomenon at a behavioral, computational, and
neural level. We show that time-ambiguity has a neurobehavioral
signature distinct from that of impatience and, until now, appears to have
been overlooked.
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