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Abstract 

The investigation of decisions under risk has mainly followed one of two approaches. 

One relies on observing choices between lotteries in which economic primitives (outcome 

magnitudes, probabilities, and domains (i.e., gains and losses)) are varied systematically, and 

this information is described to participants. The systematic variation of the economic 

primitives allows to formally describe behavior with expectation-based models such as 

expected utility theory or cumulative prospect theory (CPT), arguably the most prominent 

descriptive theories of risky choice. One drawback, however, is that lottery tasks can seem 

artificial, likely reducing the external or ecological validity. A second more naturalistic 

approach employs dynamic paradigms that mimic features of real-life risky situations and are 

assumed to have higher ecological validity. Because key information are often not provided to 

the decision maker, it is impossible to apply the same models as in the first approach. The 

goal of the present work is to integrate both approaches, by developing models for the "hot" 

Columbia Card Task (CCT), a task that combines a dynamic decision situation with 

systematic trial-to-trial variation in economic primitives. In a model comparison on the basis 

of the data of 191 participants, we identified a best-performing model that describes behavior 

as a function of CPT’s main components, outcome sensitivity, probability weighting, and loss 

aversion. Our work therefore provides a framework that allows the description of risk-taking 

behavior in a naturalistic dynamic task based on key psychological constructs (e.g., loss 

aversion, probability weighting) that are rooted in the factorial variation of economic 

primitives. 

 

 

Keywords: risk taking, cognitive modeling, Columbia Card Task, cumulative prospect theory, 

reference point
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Introduction 

Who takes risks, and why, are central questions in the behavioral sciences. Research 

investigating these issues often follows one of two approaches, each with its own strengths 

and limitations. The first, approach uses highly abstract decision situations with 

systematically designed stimuli to study people’s risk taking, whereas the second, approach 

uses, dynamically evolving and thus more realistic and ecologically valid tasks. Without 

making strong claims about connotation, we refer to the first approach as the “systematic- 

variation” approach to study risk taking and the latter as the “naturalistic” approach. With the 

present work, we aim to combine the strengths of the systematic-variation and naturalistic 

approaches, while trying to minimize the limitations of each. 

The systematic-variation approach to study risk taking has emerged mainly from 

research in economics and the decision sciences: Here, researchers aimed to develop models 

to quantitatively describe individuals’ risky decisions as a function of their risk preferences. 

Risk preferences are expressed relative to risk-neutral behavior and are based on the 

subjective representation and integration of outcome magnitudes, each weighted by some 

function of the outcome probabilities (yielding the expectation of an option). Therefore 

models describing this representation and integration are based on the notion of the 

maximization of expectation. The most prominent models following this notion are expected 

utility theory (EUT, Von Neumann & Morgenstern, 1944), prospect theory (Kahneman & 

Tversky, 1979), and cumulative prospect theory (CPT; Tversky & Kahneman, 1992). To 

illustrate the idea of expectation-maximization based models we consider CPT, arguably the 

most influential theoretical framework for describing decisions under risk. According to CPT, 

people’s risky decisions can be captured assuming three core psychological components: 

sensitivity to nominal differences in outcomes (e.g., how much does the subjective utility of 

outcomes change if the stakes are doubled?), sensitivity to differences in probabilities (e.g., 

how much does the subjective decision weights change if the chance of winning is doubled?), 
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and differential attraction to gains versus their aversion to losses (e.g., does losing hurt as 

much as winning makes you happy?). Thus, once a person’s outcome and probability 

sensitivity and their relative aversion to losses (compared to gains) has been characterized, 

one can predict how this person will decide in any well-defined situation (i.e., with precisely 

described outcomes and probabilities). 

Quantifying a person’s risk preference by means of these three components requires 

multiple observations of choices between prospects that vary in their outcome probabilities, 

magnitudes and outcome domains (i.e., gains, losses, mixed lotteries). In pursuit of this goal 

and in view of these requirements, researchers have used lottery paradigms in which 

individuals typically make many dozens of choices between monetary lotteries that 

incorporate such variation in a systematic way. To ensure that people do not make decisions 

for combinations of lotteries and avoid changes of reference points, the outcomes of these 

lotteries are often not revealed to the participants and typically only one lottery is randomly 

drawn and played out at the end of an experiment to assure incentive compatibility. In sum, 

these paradigms are designed with the goal of ruling out nuisance factors and to precisely 

assess the relevant key variables in the models that determine individuals’ risky decisions.  

Arguably owing to the experimental rigor of the systematic-variation approach, it can 

and has been criticized as lacking important aspects that characterize everyday situations: 

Risky situations in everyday life are often more complex than choices between well-defined 

monetary lotteries. They include a variety of different psychological factors, including 

dynamic changes of the situation, receiving immediate feedback, and thus being provided 

with the opportunity to learn (likely via more cognitive and via more affective processes) 

from the outcome of a choice and potentially adjust behavior before making the next choice. 

From this perspective, the lottery paradigm may seem artificial and abstract, as it does not 

incorporate relevant processes such as dynamic changes, feedback, and affective and 

motivational processes. However, these processes have been shown to be important factors in 
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risky decisions (Bell, 1982; Figner, Mackinlay, Wilkening, & Weber, 2009; Frey, Rieskamp, 

& Hertwig, 2015; Loewenstein, Weber, Hsee, & Welch, 2001; Loomes & Sugden, 1982; 

Mellers, Schwartz, Ho, & Ritov, 1997; Pachur, Hertwig, & Wolkewitz, 2014). And thus—at 

least to the extent that the goal is to capture and mimic real-life risky choice situations that do 

involve these processes—these typical lottery methods likely may have limited ecological 

validity (Schonberg, Fox, & Poldrack, 2011).  

The focus of the naturalistic approach, in contrast, is to mimic real-life risky decision 

making by incorporating into the task paradigms key aspects of such situations. Accordingly, 

these task paradigms often use more engaging problems in the form of playful, game-like 

tasks. Often, the decision situation contains a dynamic element and participants receive 

immediate feedback and thus experience the outcomes of their decisions. All these factors are 

assumed to contribute to considerable affective engagement (Schonberg et al., 2011). Slovic 

(1966) was the first to use a game of this sort (often referred to as the Devil’s Task) to 

investigate children’s risk preferences in an experimental study: Children were asked to pull 

as many of ten indistinguishable switches as they wished. Nine switches were “safe,” each 

leading to a gain in the form of sweets. One was a “disaster” switch, leading to a complete 

loss of all sweets gained so far and ending the experiment. The number of pulled switches 

was used as a measure of the child's risk preference. Thus, the probability of a loss increased 

dynamically with each pulled lever, and participants received immediate feedback. Other 

games have used the same basic idea of dynamic increases in riskiness over time, such as a 

task used to investigate risk taking in psychopaths (Siegel, 1978), the Balloon Analogue Risk 

Task (BART; Lejuez et al., 2002), its variant, the Angling Risk Task (Pleskac, 2008), the 

Sequential Investment Task (SIT; Frey, Rieskamp, & Hertwig, 2015), and the "hot" Columbia 

Card Task (CCT; Figner et al., 2009). 

The shared structure of these games—in which participants make sequential risky 

choices where the riskiness increases incrementally with each choice and immediate feedback 
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is provided following each choice—is common to many real-world risk-taking situations 

(Goldberg & Fischhoff, 2000; Leigh, 1999; Moore & Gullone, 1996; Weber & Johnson, 

2009) and matches both the economic and lay definition of risk (March & Shapira, 1987): 

Within a trial, each successive choice of the risky option (i.e., pulling another lever, inflating 

the balloon by another pump, turning over another card) instead of ending the current trial 

increases the outcome variability (i.e., risk in the economic sense) and increases the 

probability of exposure to a negative consequence (i.e., the lay definition of risk). 

It has been suggested that these game-like tasks to evoke the affective components that 

also accompany naturalistic risk taking, such as the feeling of escalating tension and 

exhilaration when a participant pushes decisions to maximal gain against the probability of a 

loss (Schonberg et al., 2011). Possibly because they capture the emotional components of risk 

taking and appear to be more similar to naturalistic risk taking, they have been successful in 

differentiating healthy controls from different groups of high risk takers—for example 

substance abusers (Bishara et al., 2009; Bornovalova, Daughters, Hernandez, Richards, & 

Lejuez, 2005; Coffey, Schumacher, Baschnagel, Hawk, & Holloman, 2011; Crowley, 

Raymond, Mikulich-Gilbertson, Thompson, & Lejuez, 2006; Hunt, Hopko, Bare, Lejuez, & 

Robinson, 2005; Ledgerwood, Alessi, Phoenix, & Petry, 2009) or prisoners (Wichary, Pachur, 

& Li, 2015). Although we are not aware of a systematic review, relative to static lottery-type 

tasks without feedback, these dynamic task types seem to more often show significant 

correlations with self-reported “real-life” risk-taking behaviors (e.g., Aklin, Lejuez, 

Zvolensky, Kahler, & Gwadz, 2005; Bornovalova et al., 2009; Hunt et al., 2005; Lejuez et al., 

2003; 2003; MacPherson, Magidson, Reynolds, Kahler, & Lejuez, 2010; Mishra, Lalumière, 

& Williams, 2010; Skeel, Pilarski, Pytlak, & Neudecker, 2008; Swogger, Walsh, Lejuez, & 

Kosson, 2010; for a similar argument, see Schonberg, Fox, & Poldrack 2011)).  

Typical analyses using dynamic task paradigms involve creating an aggregate score 

that captures participants’ propensity to choose a risky option, such as the number of pulled 
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levers in Slovic’s task, the number of pumps in the BART, or the net score in the IGT 

(although this measure is difficult to interpret because the net score is computed on the basis 

of the expected value of the decks, but nevertheless typically interpreted in terms of risk 

taking). Because the main goal of applying these tasks is often to produce a score that 

maximally differentiates groups of risk takers or to predict “real-life” risk taking with high 

accuracy, the task paradigms have been optimized accordingly, although it has typically 

abstained from systematically varying factors such as outcome magnitudes, probabilities, and 

domains. 

Because these factors are not systematically varied (as they are largely under the 

participant’s control), the observed risk-taking scores are only based on decisions with the 

possible outcomes of winning against losing within a rather restricted range of possibilities. 

As a consequence, risk-taking scores obtained in these paradigms may have limited 

generalizability to other situations with other outcome domains, for example to pure loss or 

pure gain domains, or other probability ranges. Along with this, the parameters of 

expectation-based models such as CPT cannot be reliably estimated from the data, which is 

undesirable as the estimated parameters in CPT would—at least theoretically—hold for any 

kind of decision situation that can be described by outcome probabilities and outcome 

magnitudes.  

For some dynamic tasks, such as the Iowa Gambling Task (IGT), the BART, or the 

SIT researchers have developed quantitative models that include specific mechanisms to 

match task characteristics. For instance, in the IGT, BART, and the SIT participants start with 

no knowledge about the probabilities and outcome magnitudes of the different choice options. 

Thus, over the course of the task, participants usually have to learn the probabilities and 
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magnitudes based on experience and feedback.1 Thus, the learning process becomes of major 

interest and the quantitative models developed for these types of tasks focus centrally on the 

learning processes. Because these additional processes, such as learning, are given special 

attention, other central aspects of risk-taking, such as loss aversion, captured by CPT are 

given less attention.  

Bridging the Gap 

In the present article we aim to combine the advantages of the systematic-variation 

approach of enabling precise quantitative measures of risk-preferences with the advantage of 

the second naturalistic approach of higher ecological validity by examining a dynamic 

naturalistic task with feedback. We argue, consistent with the view of Schonberg et al. (2011), 

that the "hot" Columbia Card Task (CCT; Figner & Voelki, 2004; Figner et al., 2009) 

represents a task that is suitable to bring both approaches together: The CCT is dynamic and 

at the same time systematically varies outcome magnitudes and probabilities and thus 

involves decisions that can be represented as explicitly defined lotteries. This should make it 

possible to describe behavior at the level of psychological mechanisms with expectation-

based models such as CPT. We therefore chose the CCT as a promising candidate to apply 

expectation-based models to a dynamic task paradigm, thus hoping to combine the advantages 

of the two discussed approaches: On the one hand, we want to use models to capture and 

describe risk preferences based on psychological components (such as outcome sensitivity 

and loss aversion) and on the other hand we hope to combine this with greater real-life 

similarity and affective involvement due to the dynamic task structure and immediate 

feedback. To the best of our knowledge, a model for the CCT that allows to identify 

                                                 

 
1 Because learning the relevant information takes participants many trials, systematic variation of key variables 

such as outcome magnitudes and probabilities is simply not feasible, as participants would probably not be able 

to learn it within a reasonable number of trials. 
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individual differences by various parameters has so far not been developed and tested.2 Thus, 

the main objective of the present study was to establish a model that serves to quantify 

individual differences in risk taking in the CCT and that provides explanations for behavior 

via its psychological mechanisms.  

The remainder of the paper is structured as follows: We will first describe the CCT 

and discuss how the sequential nature of this task parallels the structure of other dynamic 

tasks (such as Slovic’s task or the BART), while at the same time providing fully described 

decision options as in the lottery paradigm (i.e., unlike in the BART, in the CCT participants 

are provided with the relevant information about gain amounts, loss amounts, and their 

probabilities and do not have to learn this information based on experience). We then outline 

a series of models to describe decision making in the CCT and explain our model comparison 

approach. Next, we describe the specifics of the experimental study in which 191 healthy 

participants made decisions in a modified version of the hot CCT. The participants also 

answered a series of self-report risk-taking questionnaires that served to test and compare the 

convergent validity of observed CCT behavior and estimated model parameters. Thereafter, 

we report the results of the study and the model comparison analyses. 

The Columbia Card Task 

Figner and Voelki (2004) introduced the CCT to investigate information integration in 

risky choice. Figner et al. (2009) used a "hot" affective and a "cold" deliberative CCT version 

to investigate the influence of affective and deliberative processes in risk taking. In the “hot” 

(sequential) CCT version, participants play multiple rounds of a computerized card game, in 

each of which they are shown 32 cards: At the beginning of each round, all cards are shown 

                                                 

 
2 Van Duijvenvoorde and colleagues (2015) have applied a risk return model without adjustable parameters to 

decompose behavior in an fMRI-adapted version of the CCT. Consistent with their goal of identifying neuronal 

responses to changing objective risks (outcome variability) and changing objective returns (expected value), 

their computational model did not account for individual differences in subjective representations of those, 

except for modeling individual differences in sensitivity to risks and returns. 
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face down. Participants can turn over cards as long as gain cards are encountered. Each gain 

card adds a specified gain amount to the payoff of the current round, and the player can 

voluntarily stop the round and claim the obtained payoff (i.e., the round's current score). As 

soon as a loss card is encountered, the trial terminates; that is, no more cards can be turned 

over and a specified loss amount is subtracted from the round's current score. Crucially, the 

loss amount, gain amount, as well as the number of loss cards is transparently displayed. 

The sequential nature of the hot CCT with increasingly likely negative consequences 

has been shown to evoke strong affective responses. In the hot CCT, whether a participant 

encounters a specific choice situation depends on the preceding decisions. For example, a 

player could face the decision of whether or not to turn over a 10th card in a game round with 

1 loss card, a gain amount of 30 cents and a loss amount of 250 cents. In this example, the 

participant will only encounter that specific choice situation when deciding to turn over the 

previous 9 cards, and when all these 9 previous cards were gain cards. Accordingly, 

participants in the hot CCT receive immediate feedback on every single decision. Deciding to 

turn over another card after just having successfully turned over a gain card is assumed to 

reflect a highly arousing experience that involves anticipatory and anticipating emotions. 

Figner et al. (2009) consistently found higher emotional arousal in the sequential "hot" 

compared to the more deliberative "cold" CCT, in which participants indicate at the beginning 

of each round how many cards they wish to turn over and receive feedback only at the end of 

the game. The same pattern was observed for both self-reported emotional arousal and for 

emotional arousal operationalized via skin conductance responses (SCR), a widely used 

physiological measure of emotional arousal (Boucsein, 2012; Critchley, Elliott, Mathias, & 

Dolan, 2000; Figner & Murphy, 2011). Recent work further supports the role of emotional 

processes in risky choice in the CCT (e.g., Baumann & DeSteno, 2012; Panno, Lauriola, & 

Figner, 2013; Panno, Lauriola, & Pierro, 2015). In sum, the hot version of the CCT appears to 

evoke substantial affective involvement and has been shown to be sensitive in capturing 
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individual differences such as age (e.g., Figner et al., 2009; Huang, Wood, Berger, & Hanoch, 

2013; van Duijvenvoorde et al., 2016), personality (e.g., Buelow, 2015), and situational 

factors such as stress (e.g., Jamieson & Mendes, 2016). 

Although the hot CCT is similar to other dynamic tasks that evoke affective 

involvement, it is distinct from these tasks by provided information about the potential 

outcomes and the probabilities with which these outcomes occur. Thus in contrast to the 

BART or IGT no probabilities need to be learned. Unlike the Devil’s Task, the BART, and 

the Angling Risk Task, the CCT systematically varies probability, gain magnitudes, and loss 

magnitudes and unconfounds the probability and magnitude of potential losses. The decisions 

in the CCT essentially represent choices between lotteries: The “stopping” option represents a 

sure-payoff lottery and the “turning over another card” option represents a lottery with two 

possible outcomes. Thus, although the CCT is a dynamic task, it has the advantage of 

involving well-defined options, allowing the application of computational models, such as 

EUT and CPT. 

Models for the Hot CCT  

In each of the game rounds in the CCT, participants repeatedly choose whether to turn 

over a card or to stop and cash the accrued payoff. To make their choices, participants need to 

evaluate whether turning over a card leads to a higher expected benefit compared to stopping. 

Prospect theory assumes that the evaluation of the two options can differ substantially 

depending on what people perceive as the reference point that defines gains and losses, and 

depending on how the probabilities of the potential outcomes determine their expectations. 

We first discuss two variants of reference points and then outline models that account for 

different ways of constructing expectations. We describe the basic idea of the models and 

provide a formal description in Appendix A. 

Reference point. In one model variant the reference point consists of the accumulated 

payoff in each round and is therefore updated after every decision. We refer to this type as the 
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decision-updated (DU) reference point (see also van Duijvenvoorde et al., 2015, Wallsten et 

al., 2005). Under this model variant, the decision maker chooses between receiving a payoff 

of zero (i.e., stopping) and gaining or losing some payoff with some probability (i.e., turning 

over another card). 

According to the second model variant, the reference point is updated after the 

completion of each game round. We refer to this type as the round-updated (RU) reference 

point. Correspondingly, the option to stop is perceived as receiving the payoff accumulated in 

the current round. Likewise, the option to turn over another card is perceived as receiving 

with some probability the accumulated payoff plus the potential gain and with some 

probability the accumulated payoff minus the potential loss. The decision to turn over a card 

is thus a function of the difference between the money accrued so far (i.e., the sure outcome 

of stopping) and the expected outcome of the lottery of turning over one more card plus the 

accrued money so far. 

Therefore, in the first model variant (DU-reference point) participants ignore the 

history of outcomes in the round and focus entirely on the outcomes and probabilities relevant 

for the current binary choice between the take-card and the stop option. Accordingly, 

participants only consider whether the prospect of taking an additional card would yield an 

outcome greater than zero (i.e., a positive expected utility). In contrast, in the second model 

variant (RU-reference point), participants take into account the history of the previous gains 

in the current round. Because both variants appear to be plausible potential decision 

mechanisms to capture individuals’ decisions in the CCT, we implemented both types of 

reference points in all of the following expectation-based model variants. 

Expectation-based models. Expectation-based models describe individuals’ behavior 

in terms of expectation maximization, which is generally expressed as the average of an 

option’s outcomes weighted by its probabilities. Expected-value maximization represents the 

most basic form of this model. The expected value (EV) model assumes risk-neutral behavior. 



Running Head: Prospect Theory and CCT 

Draft version 1, 28/5/18. This paper has not been peer reviewed 

13 

13 

To take into account the stochastic nature of people’s preferences, we use an exponential 

choice rule, in which the probability of turning over a card is modeled as a monotonic 

function of the differences between the expected values of both options. One free parameter 

() scales the degree of determination in the choice function, with lower values denoting more 

random choice and higher values denoting more deterministic choice. We use the exponential 

choice rule for all following expectation-based models.  

The expected utility (EU) model assumes that people maximize the expected utility of 

their decision, where the utility (defined by a utility function) represents the subjective value 

of the risky outcomes. We formalize the utility function by a power function with one free 

parameter (), describing its curvature, and with this quantify individual differences in risk 

preferences.  

However, people have been shown to violate the principles of EU theory (for reviews 

see Camerer, 1992; Starmer, 2000). CPT accommodates these violations by allowing 

additional mechanisms to influence risky choices. These mechanisms are embedded in CPT’s 

three basic features: (a) A value function is defined over subjective gains and losses, which 

accounts for the observation that people are sensitive to changes in their status quo (rather 

than their overall wealth level). As in in the EU model, the curvature of this function is 

defined by the parameter () that quantifies the decision maker’s sensitivity to differences in 

the magnitude of outcomes. (b) Loss aversion reflects that people typically overweight losses 

relative to gains. The loss aversion parameter  quantifies how participants weight losses 

relative to gains, with values larger than 1 indicating that losses are weighted more strongly 

than gains. (c) Probability weighting addresses the fact that people’s subjective representation 

of probability often deviates from the objective probabilities by overweighting small and 

underweighting large probabilities. The functional form is defined by two parameters ( ) 

quantifying the decision maker’s sensitivity to differences in probabilities and under- or 

overweighting of probabilities, respectively. The details about the implementation of the 
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models are described in Appendix A.  

Which features an expectation-based model needs to adequately describe behavior in 

the hot CCT is an empirical question that is of central interest in this paper: To this end, we 

compare models that are differently flexible and thus differently complex in explaining 

behavior in the CCT. Specifically, we test the EV model, and the EU model, as well as 12 

variants of CPT (differing in model complexity) against each other. For CPT we estimate the 

parameters for the value and weighting functions either jointly for gains and losses or 

separately for gains and losses (separate parameters for gains and losses can capture whether 

participants' marginal utility and/or perception of probabilities differs for gains versus losses). 

Further, we consider both a one-parameter and a two-parameter probability weighting 

function (the two-parameter function additionally accounts for general under-/ overestimation 

of probabilities, respectively). Therefore, individual differences in making decisions in the 

CCT are captured by four parameters in the simplest version of CPT (value function: ; 

probability weighting: ; loss aversion: ; choice stochasticity: ), and eight parameters in the 

most complex version of CPT (value function: + −3; probability weighting: + −; 

probability under-overestimation: + −; loss aversion ;  choice stochasticity: ). A 

complete overview of all the tested model variants is shown in Table B1, Appendix B. 

Constant probability (CP) model. According to the expectation-based models, 

participants take the information of a game round (i.e., gain amount, loss amount, number of 

loss cards) into account when making decisions. However, it may be that some participants 

ignore this information and rather follow the simple strategy of turning over cards with a 

constant probability (e.g., at each binary decision to turn over a card or to stop, a participant 

might have a 90% probability that they will turn over a card and a 10% probability that they 

                                                 

 
3 The + and – after the Greek parameter letter indicate that the parameter applies only to gains or losses, 

respectively. 
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will stop voluntarily). With the sequential structure of the CCT, turning over cards with a 

constant probability results in a negatively accelerating decrease in compound probability. In 

other words, this model can account for behavior of participants who ignore gain and loss 

amounts, but frequently turn over the first few cards and then stop turning over cards with 

rapidly increasing probability (for example, the overall probability of turning over the first 

card in our example would be 90%, the probability of turning over a second card would be 0.9 

× 0.9 = 81%, the probability of turning over a third card would 0.9 × 0.9 × 0.9 = 73%, etc.). 

Thus, the CP model should sensitively identify participants who simplify the situation and 

give little attention to the different information when making choices. 

Model Estimation  

Each model was estimated separately for each participant using a maximum likelihood 

method. Specifically, we used the Nelder-Mead Simplex method to estimate the parameter 

combination that maximizes the likelihood of the observed choices. The search space was 

restricted to (0< (+ −) < 3), (0 < (+ ) < 3), (0 < (+ −) < 3), (0 <  < 10), and (0 <  < 

10). These ranges include the commonly reported values for CPT (e.g., Glöckner & Pachur, 

2012; Scheibehenne & Pachur, 2015) but also allow for values beyond this range (which 

seems desirable given that CPT has not previously been applied to the CCT). To reduce the 

risk of local minima, each search was repeated 20 times, with new random starting points in 

the range of the search field of the parameters. We found for differently complex models that 

20 repetitions are sufficient to yield stable parameter estimates with the subsequent 

optimization. Accordingly, the best-fitting parameter combination was chosen among these 

20 repetitions.  

Model Selection Approach 

The main objective of the present study is to establish a formal model that allows for 

the decomposition of choice behavior in the hot CCT and may thus be used as a measurement 

model to quantify individual differences in the CCT. Accordingly, an ideal model should 
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accurately and parsimoniously describe behavior in the CCT for a majority of individuals. At 

the same time it should be possible to estimate the parameters that account for the individual 

differences in risk taking in an unbiased and precise fashion. With these goals in mind, we 

base the model comparisons on overall fit and parsimony in terms of the averaged (across 

participants) Bayesian Information Criterion (BIC, Schwarz, 1978), which penalizes the 

models for their numbers of parameters. To further account for the adequacy of the models at 

the individual level, we additionally calculate the rank of the BIC for each model for each 

participant and compare the aggregate (across participant) ranks (cf. Buschena & Zilberman, 

2000; Hey, 1995; Hey & Orme, 1994; Stott, 2006).  

After delineating a set of adequate models we submit these best-ranked models to 

parameter recovery analyses, to ensure that the best-performing model not only captures the 

empirical data well but also allows for an unbiased and precise parameter estimation. For that 

purpose, we use the median parameter estimates across participants of the best-fitting models 

to simulate choice behavior of a prototypical participant for the CCT. We then estimate the 

model again using these choices. This process is repeated 1,000 times and thus provides a 

distribution of estimates. The results are used to evaluate whether the data-generating 

parameters can be recovered accurately, preferably with unimodal distributions of low 

variance.  

Methods 

Participants and Procedure 

We used the data of 191 healthy participants (120 woman and 71 men) with an 

average age of 24.8 years (SD = 2.9) taking part in a large-scale study on risk preferences 

(Pedroni et al., 2017, Frey et al., 2017, Dutilh et al., 2017; https://osf.io/rce7g). We fixed the 

sample before the start of the study to the first 200 participants of the study. With this sample 

size we aimed to balance exceeding computational time to estimate each of the 28 models for 

each participant with a sample large enough to cover large parts of the variability in decision 
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making between the participants. 9 of the 200 first datasets were incompletely recorded due to 

technical difficulties, resulting in the effective sample of 191 participants. The completion of 

the CCT and the self-report measures (described below) took about 40 minutes. The 

experiment took place at the University of Basel, Switzerland (n = 73) and the Max Planck 

Institute for Human Development in Berlin, Germany (n = 118). The respective local ethics 

committees approved the study, which was conducted in accordance with the Declaration of 

Helsinki. Participants received a detailed explanation of the study, and written informed 

consent was obtained. 

 In addition to the CCT, participants completed seven other incentivized behavioral 

tasks. At the end of the experiment, one of the incentivized behavioral tasks was randomly 

selected to be played out. If the CCT was selected to be played out, three game rounds were 

chosen randomly and summed to a total payoff. One point was worth CHF 0.02 in 

Switzerland and € 0.015 in Germany. The payoff (which could be negative or positive) was 

added to a flat-fee payment for participating in the study. 

Material  

Modifications to the CCT. We used the “hot” version of the CCT, with presentation 

and structure of the task identical to the original set-up (Figner et al., 2009). However, to 

obtain precise parameter estimates of the value and probability weighting functions it is 

advantageous to sample decision behavior for a wide range of outcome magnitudes and 

probability levels. Thus, we extended the current task to include game rounds with medium to 

high probabilities of losses; that is, 10, 16, 20, or 28 loss cards (out of the total 32 cards in 

each round), compared to the maximum of 3 loss cards in the original CCT. This provided 

additional data points to estimate the probability weighting function of CPT for medium to 

high loss probabilities. Second, to improve precise estimation of the value functions, we also 

extended the range of gain amounts to amounts of 10, 20, 50, 75, 100, 150, 200, 300, 400, 600 

points per gain card (original version: 10, 20, and 30 points per gain card). Third, the loss 
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amounts were similarly extended to 25, 50, 75, 100, 150, 250, 500, 750 points per loss card 

(original version: 250, 500 and 750 points per loss cards). Note that the placement of cards of 

all types was random. Contrary to the original CCT, the combination of the game parameters 

in the 84 game rounds in this study (see Appendix C) did not represent a fully factorial 

orthogonal design. Participants were interactively instructed about the game, played two 

practice rounds, and answered four questions to check whether they fully understood the task. 

After correctly answering all questions, participants started the game.  

 Self-report measures of risk taking. We also asked participants to complete the 

domain-specific risk-taking scale (DOSPERT; Weber, Blais, & Betz, 2002) in its German 

version (Johnson, Wilke, & Weber, 2004). The DOSPERT asks about the likelihood of 

engaging in various risky activities in six domains of life (“investment,” “gambling,” 

“health/safety,” “recreational,” “ethical,” and “social”), as well as the perceived benefit and 

the perceived risk of these activities. The DOSPERT assesses risk taking in different 

everyday domains and also allows measurement of the influence of perceived risks and 

expected benefits on the risk-taking tendencies (Harrison, Young, Butow, Salkeld, & 

Solomon, 2005). For each of the 30 items participants rated first the likelihood of engaging in 

the specific risky behavior, second the perceived risk, and third the expected benefits. The 

DOSPERT was scored as in Johnson et al. (2004), computing the mean of each of the six 

domains for the rating scales “likelihood,” “perception,” “benefit” as well as the total scores 

across all different domains. 

 Furthermore, we assessed participants’ sensation seeking and impulsivity (Lauriola et 

al., 2014), both of which have often been linked to risk taking. Zuckerman (2007, p. 27) 

defines the sensation-seeking trait as individual differences “in the seeking of varied, novel, 

complex, and intense sensations and experiences, and the willingness to take physical, social, 

legal, and financial risks for the sake of such experience.” Conceptually, sensation-seeking is 

connected to risk taking by means of the search for excitement and arousal that often comes 
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with high degrees of risk (Zuckerman, 2007). We used the German version (Beauducel, 

Strobel, & Brocke, 2003) of the Sensation Seeking Scale (SSS), version V (Zuckerman, 

Eysenck, & Eysenck, 1978). The SSS contains four subscales (each with 10 items), 

representing the factors of “thrill and adventure seeking” (TAS), “experience seeking” (ES), 

“disinhibition” (DIS), and “boredom susceptibility” (BS). Figner et al. (2009) found that their 

scale "need-for-arousal"—which is arguably similar to sensation seeking—was significantly 

correlated with risk taking in the hot CCT. 

 Impulsivity has been often associated with risky behaviors such as drug abuse, risky 

driving, unprotected sex, and problem gambling (e.g., Chambers & Potenza, 2003; Dahlen, 

Martin, Ragan, & Kuhlman, 2005; de Wit, 2009; Hoyle, Fejfar, & Miller, 2000). Impulsivity 

was measured with the German version (Preuss et al., 2008) of the Barratt-Impulsiveness-

Scale (BIS-11, Patton et al, 1995). Based on the 30 items, we computed the three second-

order factors “attentional,” “motor,” and “non-planning” impulsiveness. 

 We used Spearman rank correlations to examine the association of the total number of 

cards turned over by each participant, the number of game rounds in which the participant 

encountered a loss card, and the model parameters of the most adequate model (the CPT-1 

model, see below) with (a) the DOSPERT measures on the three scales likelihood of risky 

behavior, perceived risk and expected benefit, (b) trait impulsivity, and (c) trait sensation 

seeking. Given that the CCT shares similar key features with tasks such as the BART, ART, 

and Devil’s Task with high external validity, we expected that CCT measures would be 

correlated with these self-report scales.  

Results 

Card Selection 

In this modified version of the hot CCT participants showed risk-seeking behavior, 

turning over, on average, 414.2 (SD = 124.9) cards in 84 trials, relative to the risk-neutral 

number of 336 cards following from expected-value maximization. In total, participants made 
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33.9 (SD = 13.5) stopping decisions. Thus, 8.2% of all decisions were stopping decisions. For 

a single round of the game, participants turned over an average of 4.9 cards, exceeding the 

number of cards (4.0) predicted if participants maximize expected value4 (which would 

indicate risk-neutral behavior) (see Figure 1). Due to this risk-seeking behavior, an average of 

50 (±13.5) rounds ended with a loss card. Only considering those (on average 34) rounds that 

were ended by the participants voluntarily, participants took, on average, 6.7 (±3.8) cards per 

round before stopping.  

 

 

Figure 1. Descriptive Results. The dashed lines in all plots indicate the average behavior 

observed in the modified CCT. A) illustrates a linear increase in the probability of 

encountering a loss card with increasing number of cards (consistent with the lay definition of 

risk: turning over more cards is associated with a higher probability of encountering a 

negative outcome). Consequently, as evident in B) higher numbers of cards turned over yield 

more widely spread average payoffs (consistent with the economic definition of risk: turning 

over more cards is associated with greater outcome variability). C) The histogram of the 

number of cards turned over illustrates that a large majority of participants turns over more 

cards than a risk-neutral agent maximizing expected value (indicated by the solid line).  

 

Computational Modeling 

In a first step, we compared the expectation-based models with respect to the different 

reference point specifications and found that the models assuming that the reference point is 

                                                 

 
4 Such risk-seeking behavior is commonly observed in the CCT. 
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updated after each decision (DU-reference point) performed substantially better than the 

models assuming reference-point updating after each round (RU-reference point). The BICs 

of the RU models are, on average, approximately twice as large as the BICs of the models 

with DU reference points (481.4 vs. 248.7) (see Appendix B, Table B1).  

In a second step, we therefore focused only on the 14 expectation-based models with 

DU-reference point and first compared the models with respect to the average BIC across 

participants. The average BICs of the EV (604.0) and EU model (256.6) were substantially 

larger than the BICs of the 12 CPT models (all  221.1), indicating that CPT models more 

adequately describe behavior in the CCT. Within the CPT models we found comparable 

average BICs, ranging from 215.3 for the CPT-2 model to 221.1 for the CPT-12 model (see 

Appendix B, Table B1). 

Considering model adequacy at the individual level in terms of the average rank of the 

BICs (i.e. the model with the lowest, best BIC value was given the lowest, best rank of 1 for 

the specific individual), the CPT-1, CPT-2, and CPT-7 models (ranks: CPT-1 = 4.3, CPT-2 = 

3.6, CPT-7 = 3.9, with lower rank indicating better fit) outperformed the other CPT-models 

(with average ranks in the range of 5.4 to 11.1). Similarly, the CPT-1, CPT-2, and CPT-7 

models had the lowest BIC for a majority of participants. This was the case for 149 out of 192 

participants, with 73 participants for whom the CPT-1 model yielded the lowest BIC, and 

with 45 and 31 participants for whom the CPT-2 and the CPT-7 model, respectively, yielded 

the lowest BICs (see Appendix B, Table B1). 

In a third step, we submitted these three best-performing models to a model recovery 

analysis, gauging their ability to precisely measure the parameters that generated behavior in 

the CCT. The results of the parameter recovery are illustrated in Appendix B, Figure B1. For 

the CPT-7 model, parameter recovery was particularly poor: First, the choice sensitivity 

parameter  was severely biased and showed tendencies for a bimodal distribution, whereas 

the outcome sensitivity parameter for losses - was overestimated. Second, the variability of 



Running Head: Prospect Theory and CCT 

Draft version 1, 28/5/18. This paper has not been peer reviewed 

22 

22 

the recovered parameters was very high for this model, indicating that parameter estimates 

may be imprecise; these problems likely stem from the increased complexity of the CPT-7 

model. The parameters for the CPT-1 and the CPT-2 model, by contrast, showed little bias. 

However, the probability weighting parameter  in the CPT-2 model was recovered with 

large variance and followed a bimodal distribution.  

In sum, these results suggest that from the expectation-based models, CPT-1 is to be 

preferred to describe people’s choice behavior in the CCT. CPT-1 includes three parameters: 

The  parameter adjusts the functional form of the value function, the loss aversion parameter 

 , and the  parameter accounts for distortions in probabilities via the probability weighting 

function. This model is the best-fitting model for the largest group of participants according to 

its BIC values. In addition, it has the smallest number of free parameters, making it the 

preferred model by parsimony.  At last, it is the only model for which the data-generating 

parameters can be recovered accurately in an unbiased manner and with reasonably low 

variance. 

CPT-1 yields relatively high estimates for the choice sensitivity parameter , meaning 

that participants are described as making choices in a very deterministic non-random manner 

One possible explanation for this may be the sequential structure of the CCT: High values in 

 implies that cards will be turned over (or that a participant stops) with high probability even 

when the subjective values of taking a card versus stopping differ only slightly. In game 

rounds in which participants turn over more than two cards, it can be advantageous for a 

model to predict a high probability of taking cards, because the goodness of fit in such game 

rounds is more influenced by predicting high likelihoods of turning over cards, compared to 

predicting the stopping of the last decision in a game round (in the case where a participant 

has stopped). This effect becomes more pronounced in game rounds that end with loss cards: 

A model achieves a better fit when it predicts a very high probability for card turns. Because 
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our observations include 91.8% of card turn decisions compared to 8.2% of stopping 

decisions, it is reasonable to assume that these effects led to the high values in  so that the 

estimates often fell at the boundaries of the search space (see Table 1). When not restricting 

the search space for , we observed for a proportion of participants that the parameter 

estimates of  approached very large values (e.g., 50 and larger); however, with only 

marginally increasing model fits. We therefore decided to fix  to a value of 10 and re-

estimated the model only for the three remaining parameters and found no qualitative change 

in the indices of model adequacy as well as the median parameter estimates (see Table 1). 

Thus, this step reduced model complexity without loss of information. 

 

Table 1. Maximum likelihood parameter estimates for the CPT-1 model and the CPT-1 model 

with fixed choice sensitivity ( = 10) 

CPT-1      CPT-1 ( = 10)    

          

Mean 0.13 0.43 0.46 9.48  Mean 0.13 0.31 0.5 

First quartile 0.05 0.18 0.19 10  First quartile 0.05 0.17 0.25 

Median 0.12 0.27 0.46 10  Median 0.11 0.26 0.49 

Third quartile 0.19 0.43 0.67 10  Third quartile 0.19 0.41 0.68 

IQR 0.13 0.25 0.49 0  IQR 0.14 0.24 0.43 

          

 

In a final step, we compared the CPT-1 model with fixed choice sensitivity to the CP 

(i.e., constant probability) model, which assumes that participants ignore round-specific 

information. The CPT-1 model outperformed the CP model with respect to the average BIC 

(CPT-1: BIC=212.6, CP: BIC=229.0); moreover, for 114 out of 191 (60%) participants, CPT-

1 was the model with the best descriptive adequacy. The CP model, however, described the 

observed behavior of 77 (40%) participants better than the CPT-1 model. This indicates that a 

notable portion of participants seemingly did not take round-specific information into 

account. 

As shown in Figure 2A, the CP model and the CPT-1 model describe behavior 
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similarly well in rounds with many loss cards, in which only few cards can be turned over. In 

contrast, the CPT-1 model is additionally capable of capturing behavior in game rounds with 

few loss cards, in which generally more cards are turned over and which therefore are likely 

to be diagnostically more valuable (please note also that in the original CCT, there were only 

few loss cards in all game rounds, namely up to 3 loss cards). Thus, the CPT-1 model 

provides a relatively unbiased prediction of the average number of turned-over cards across 

the whole observed range whereas the CP model performs well only in the lower range 

(which was not included in the original CCT version). Importantly, as shown in Figure 2B the 

CPT-1 model also captures behavior at the individual-participant level with high accuracy. 

 

 

Figure 2. Model predictions. A) Scatterplot of the average number of cards turned over across 

participants against the predicted number of turned-over cards of the CP model and the CPT-1 

model. B) Predictions and observed behavior of three exemplar participants, selected to 

illustrate participants who differed substantially in the CCT. Depicted is the number of cards 

that the CPT-1 model predicts (in black) given the estimated parameters in 49 game 

situations. Note that 35 of the 84 rounds were played twice, resulting in 49 unique rounds. 

The underlying white bars show the number of turned-over cards of the respective participant.  

 

Parameter estimates. Recall that the majority of participants was risk seeking, as 
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they turned over, on average, 23% more cards than predicted by risk-neutral expected-value 

maximization. The CPT-1 model accommodated this high risk seeking in three ways: First, by 

assuming low sensitivity to differences in outcome magnitudes (: Md = 0.11); second, by 

substantial distortions in probability weighting (: Md = 0.26); and third by assuming a loss 

aversion parameter lower than one (: Md = 0.49), thus in fact suggesting gain seeking. This 

implies that participants put little weight on the nominal differences in the magnitudes of 

possible outcomes (i.e., gains and losses) when turning over a card, whereas gains are 

weighted more strongly than losses. The extreme distortion in probability weighting indicates 

a reduced sensitivity for the differences in gain and loss probabilities (or extreme over-/ 

underweighting of low and high probabilities, respectively). 

To illustrate the impact of the parameters on the choice behavior predicted by the 

CPT-1 model, consider an agent making choices according to this model (based on the 

median parameter estimates), facing the decision of whether or not to play a fictitious lottery 

with two possible outcomes. This lottery yields a gain of $50 with a probability of .6 and a 

loss of $100 with a probability of .4. The  parameter of 0.11 scales down the nominal 

differences between the two outcomes to subjective values of 1.54 and -1.66. Because the 

agent is gain seeking ( = 0.46) the subjective value for the loss outcome is reduced to -0.76. 

The distortion in probability weighting also reduces the differences in probabilities, resulting 

in decision weights of 0.42 for the gain outcome and 0.37 for the loss outcome. Multiplying 

the decision weights and the subjective values renders a prospect to play the lottery of 0.25 

compared to the prospect of not playing of 0. Thus, in contrast to an expected-value 

maximizer, who would not play the lottery (as the expected value of playing yields -10), the 

agent would prefer to play the lottery and hence shows pronounced risk seeking, paralleling 

the observed risk-seeking behavior in our data. 

Correlations with Self-Reported Risk Taking 

To explore the relationships between CCT behavior and the self-reported risk-related 
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measures, we computed the correlations between participants’ behavior in the CCT and the 

estimated parameters of the CPT-1 model on the one hand and participants’ responses to the 

DOSPERT (i.e., the likelihood, the perceived benefits, and the perceived risk of engaging in 

various risky activities in six domains of life) and to the subscales of the SSS and BIS-11 

scores on the other hand. Table 2 presents the rank correlations between the CCT measures 

and the risk-related self-report measures. Neither the number of cards turned over nor the 

number of rounds in which a loss card was encountered correlated with any of the self-report 

measures (this contrasts with Figner et al., 2009, who found a positive correlation between 

risk taking in the hot CCT and self-reported need-for-arousal). In contrast, the value function 

parameter  correlated positively with 4 of 6 subscores of the DOSPERT likelihood scale. In 

addition, the probability weighting parameter  correlated positively with the DOSPERT 

health subscore on the likelihood scale. Interestingly, the parameter  accounting for the 

sensitivity in outcome differences was positively related to 5 of the 6 subscales of the 

DOSPERT benefit scale. Thus, the more sensitively a person responded to differences in the 

magnitude of outcomes (i.e., higher ), the larger s/he perceived the benefits of taking risks in 

various domains. In contrast,  correlated (negatively) only with the perceived risks in the 

investment domain, indicating that the more sensitively a person responded to differences in 

the outcome magnitudes, the less risky she perceived the risk of pursuing financial risky 

activities. We did not find significant correlations between any dependent variables of the 

CCT and impulsivity, and only two significant positive correlations with subscales of the 

sensation seeking scale ( and  with the disinhibition subscale). Because we used a p value 

criterion of < .01 that was unadjusted for multiple testing (consistent with the exploratory 

nature of assessing these potential relationships), one has to be cautious in interpreting the 

results. But it appears that (a) especially the value parameter  which accounts for individual 

differences in outcome sensitivity, might capture an aspect of risky choice that might be 
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relevant for risk taking beyond the context of the CCT itself and it further appears that (b) the 

CPT modeling (again, mainly in the form of the  parameter) might indeed lead to greater 

generalizability compared to simply using an aggregate CCT score.  

 

Table 2. Correlations between variables of the CCT and risk-related self-report measures. An 

asterisk indicates a significant correlation at p < 0.01 (unadjusted for multiple testing). 

DOSPERT: E = Ethical, I = Investment, G = Gambling, H = Health, R = Recreational, S = 

Social, L = Likelihood to engage in risky behavior, PR = Perceived risk if engaging in risky 

behavior, B = Perceived benefit of risky behavior, BIS-11: Att = Attentional impulsivity, Mot 

= Motor impulsivity, NP = Non-planning impulsivity, SSS-V: TAS = Thrill and adventure 

seeking, ES = Experience seeking, D= Disinhibition, BS = Boredom susceptibility, NLC = 

number of loss cards turned over (i.e., number of rounds in which a loss card was 

encountered), NC = number of cards turned over.  

Scale  NLC NC    

DOSPERT E Likelihood -0.09 0.01 0.21* 0.08 -0.01 

DOSPERT I Likelihood -0.17 -0.04 0.19* 0.16 -0.00 

DOSPERT G Likelihood 0.00 0.02 0.12 0.04 -0.12 

DOSPERT H Likelihood -0.13 -0.09 0.20* 0.21* -0.00 

DOSPERT R Likelihood -0.05 -0.02 0.21* 0.09 -0.14 
DOSPERT S Likelihood -0.06 -0.06 0.18 0.08 -0.01 

DOSPERT Total Likelihood -0.13 -0.04 0.29* 0.18 -0.09 

       

DOSPERT E Risk perception 0.00 0.02 -0.07 -0.01 0.01 

DOSPERT I Risk perception 0.13 0.07 -0.26* -0.21* 0.08 

DOSPERT G Risk perception -0.01 0.07 -0.10 -0.03 0.09 

DOSPERT H Risk perception -0.04 -0.07 -0.07 -0.10 0.00 

DOSPERT R Risk perception -0.01 -0.02 -0.16 -0.08 0.11 

DOSPERT S Risk perception -0.02 0.03 -0.08 -0.02 0.16 

DOSPERT Total Risk perception -0.00 0.01 -0.19* -0.11 0.09 

       

DOSPERT E Benefit -0.02 0.02 0.20* 0.18 0.09 

DOSPERT I Benefit -0.11 -0.02 0.20* 0.21* 0.17 

DOSPERT G Benefit -0.01 0.05 0.07 0.09 0.05 

DOSPERT H Benefit -0.01 -0.02 0.19* 0.12 -0.01 

DOSPERT R Benefit -0.04 -0.04 0.23* 0.10 -0.09 

DOSPERT S Benefit -0.07 -0.02 0.24* 0.10 -0.07 

DOSPERT Total Benefit -0.08 -0.02 0.29* 0.19* 0.02 

       

BIS-11 Att  -0.04 0.05 0.01 -0.05 -0.10 

BIS-11 Mot  0.12 0.06 -0.01 -0.16 -0.18 

BIS-11 NP  0.08 0.05 0.06 -0.07 -0.05 

       

SSS-V TAS  -0.03 -0.09 0.11 0.06 -0.16 

SSS-V ES  0.09 0.02 0.12 0.05 -0.09 

SSS-V D  -0.11 -0.07 0.22* 0.19* 0.06 

SSS-V BS  -0.00 -0.02 -0.00 0.01 0.05 
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Discussion 

We combined two complementary approaches to investigate decision making under 

risk. In the systematic-variation approach, individuals' risk taking is assessed using choices in 

well-defined lotteries. This approach has the advantage that individual behavior can be 

formally described in terms of psychological constructs (e.g., loss aversion) using 

expectation-based models and can (at least theoretically) be generalized to other decisions. In 

the second, naturalistic approach, risk taking is assessed in more playful, game-like tasks that 

are suggested to reflect more affective and realistic risky situations, thus promising higher 

ecological relevance and validity. To combine the beneficial aspects of both approaches, we 

developed and tested theoretically founded expectation-based models for the hot CCT with 

the goals of (a) better understanding how individuals make decisions in the CCT itself, (b) 

being able to quantify individual differences in the CCT on the basis of clearly interpretable 

psychological mechanisms, and (c) exploring whether overt behavior and model parameters 

of the CCT are related to other risk-related self-report measures. 

The model comparisons favored a model according to which, when decision makers 

choose to stop or take another card in the CCT, they only consider whether taking another 

card leads to a subjective value that is positive; this suggests that they update their reference 

point after every binary decision of whether to take a card or stop and ignore the payoffs they 

have previously received. This is in line with Tversky and Kahneman’s (1991, p. 1046) 

proposal that “… the reference state usually corresponds to the decision maker's current 

position.“ Consistent with our results, it has been shown that people readily accommodate 

gains but not losses (Jervis, 1992; Kahneman, Knetsch, & Thaler, 1991). Potentially, the 

structure of the CCT further amplifies this tendency, as subsequent decisions (within the same 

game round) reflect situations after gains (except for the first decision in a new game round), 
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whereas encountering a loss card terminates the current game round. That may also explain 

differences between the hot and the cold CCT that have been described in earlier work (e.g., 

Figner et al., 2009): In the cold CCT, participants are forced to make a decision about the total 

number of cards that they want to turn over in each round, whereas in the hot CCT, 

participants can avoid such an "overall" decision (which is arguably more complex) and 

instead rely on a more local, and thus simpler, strategy that considers only whether or not to 

turn over the very next card, neither considering previous events nor making considerations 

beyond the very next card. 

 The finding that models with continuous updating of reference points captured the 

data best furthermore reveals how participants may perceive the decision situation in the 

CCT. Specifically, participants seem to perceive the gain amount as constant throughout a 

game round (and not increasing after every card), whereas the probability of turning over a 

loss card versus a gain card increases. Thus, risk taking in the CCT may be experienced as 

exposure to increasingly more likely losses and increasingly less likely gains. Accordingly, 

the CCT differs in how risk taking is experienced compared to the BART, a closely related 

task. Similar as in our study, Wallsten, Pleskac, and Lejuez (2005) compared a number of 

computational models to describe behavior in the BART. The best-performing model in their 

analysis suggested that in the BART, participants consider in each decision the overall value 

of the potential gains relative to the starting point instead of the updated marginal value of a 

potential gain (but see Schonberg et al., 2012 for an alternative interpretation). Our results 

suggest that the choices in the CCT may be perceived by participants similarly to the 

decisions in risk tasks of the systematic-variation approach, particularly ones such as the Holt 

and Laury (2002, 2005) procedure, in which the probabilities of monetary outcomes are 

varied systematically, while the monetary outcomes are held constant. 

The observed risk-seeking behavior in the CCT, however, clearly diverges from the 

pattern of risk aversion usually found in tasks following the lottery paradigm (e.g., Holt & 



Running Head: Prospect Theory and CCT 

Draft version 1, 28/5/18. This paper has not been peer reviewed 

30 

30 

Laury, 2002, 2005; but see, e.g., Berg et al., 2005). Risk aversion is also regularly observed in 

studies using game-like paradigms (e.g., Lejuez, 2002). In our view, this risk-seeking 

behavior in the present study (note that other studies using the CCT have also found risk-

seeking behavior, e.g., Figner et al., 2009) may be due to how participants evaluate the 

valence and magnitudes of outcomes and probabilities, as reflected in the parameter estimates 

of our favored computational model. 

Using Cumulative Prospect Theory for modeling behavior in the hot CCT   

The most adequate model (the CPT-1 model) incorporates a set of three clearly 

identifiable parameters (tested with a parameter recovery approach), which parameterize the 

key components of CPT: The  parameter adjusts the functional form of the value function, 

reflecting participants’ sensitivity to differences in outcomes. The loss aversion parameter 

 reflects differential weighting of gains relative to losses, and the  parameter accounts for 

distortions in probabilities via the probability weighting function.  

Our results show rather low average values for the three parameter estimates 

compared to parameter estimates that are typically found when participants make risky 

choices in the commonly used lottery paradigms (e.g., Tversky & Kahneman 1992). The low 

average estimates for the value function parameter that we observed imply that in our study a 

typical participant rather insensitively evaluates the nominal differences in outcomes. In 

addition, the estimates of the probability weighting function suggest pronounced 

overweighting of small and underweighting of large probabilities, with insensitivity to 

changes in medium range probabilities. Finally, the estimates of the loss aversion parameter 

are on average below 1, indicating that a typical participant may be more inclined to seek 

gains than to avoid losses. Thus, the combination of these components offers an explanation 

for the overall risk-seeking behavior, suggesting that participants in the CCT were generally 

more attracted by gains compared to losses, while only marginally taking into account 

nominal differences between gains and losses and the underlying probabilities. Therefore, 
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seemingly paying relatively little attention to the outcomes and underlying probabilities, 

participants may feel attracted to turn over cards and do so quite excessively. 

Risk-seeking Behavior in the CCT 

We believe that several factors might be contributing to the characteristic pattern of 

parameter estimates and the associated high level of risk seeking in the CCT. Moreover, these 

factors are likely to contribute to increased dynamic risk-taking in real-world situations as 

well. First, and perhaps most obviously, the “hot” version of the CCT presents the decision 

maker with up to 32 different cards that can be turned over, and one single button for 

stopping. Thus, the hot CCT may incorporate demand characteristics that make turning over a 

card the default action, presumably increasing the probability of choosing a card rather than 

not drawing another card. In some real-life risk-taking situations, taking the risk may also be 

the default option (e.g., ordering another drink in a bar; drive home in the car you came with, 

although you have been drinking; not interrupting to put on a condom).  

Second, participants may strive not only to maximize their expectation of potential 

monetary gains, but also may strive to experience rewarding anticipatory emotions such as 

feeling thrilled and exhilarated while drawing cards, again a factor likely contributing to risk-

taking in the real-world. The study of Figner et al. (2009) supports that this factor contributes 

to risk-taking in the CCT, as the participants reported more “excitement” and “gut” decisions 

in the “hot” than the “cold” (i.e., non-sequential) version of the CCT.  

Third, as discussed by Figner and Weber (2011), in the “hot” CCT each new game 

round starts with a rather low loss probability, meaning that early decisions in a game round 

to turn over a card are typically rewarded with a gain, likely reinforcing a tendency to turn 

over more cards, which then requires possibly some form of instrumental intervention or 

inhibitory control to stop a game round voluntarily (see also Gladwin & Figner, 2014; 

Gladwin, Figner, Crone, & Wiers, 2011). In real-life situations (such as smoking or 

unprotected sex), the negative consequences often happen only after repeated risk-taking, 
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either because they have a generally low probability of occurring or because they are delayed 

for other reasons (e.g., unwanted pregnancy is unlikely to occur after a single instance of 

unprotected sex, and the consequences are noticed only after a while).  

Fourth, the hot version of the CCT was designed to trigger affective involvement (as 

this is an important factor in many real-life risk-taking situations), and the observed low 

probability sensitivity in the CCT is thus consistent with earlier work showing that 

involvement of affective processes reduces probability sensitivity (Pachur et al., 2014; 

Rottenstreich & Hsee, 2001; Suter, Pachur, Hertwig, Endestad & Biele, 2015; Suter, Pachur, 

& Hertwig, 2015). In sum, it is conceivable that the CCT may promote behavior that is rather 

common in some situations of dynamic risk taking in real life, namely that people may pay 

more attention to the possible gains than the losses, are relatively insensitive to the 

probabilities and the outcome magnitudes, and pay more attention to the gains than the losses. 

These patterns are reminiscent of what can be observed in smoking, unprotected sex, and 

drunk driving, and thus direct empirical investigations of these relationships could be a 

crucial next step in better understanding the psychological mechanisms underlying excessive 

dynamic risk taking. 

Individual Differences 

In addition to the overall pattern of risk-seeking behavior in the CCT, we observe 

large heterogeneity in observed behavior: Risk taking quantified by the average number of 

turned-over cards per game round differed substantially between participants, ranging from 

3.9 cards per game round in the first quartile to 6 cards per game round in the third quartile. 

At first sight it is not obvious how differences in parameter estimates relate to these 

differences. Following our conclusion that participants seem to update their reference point 

after each decision, the choice between turning over a card or not reflects a decision between 

a certain outcome (i.e., stopping) and a mixed two-outcome lottery. Because the parameter for 

the value function is jointly estimated for gains and losses, decreasing concavity of the shape 
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of the value function (if considered in isolation) implies both risk aversion with respect to the 

evaluation of the gain-part of the lottery of turning over a card and risk seeking with respect 

to the evaluation of the loss-part of turning over a card5. The same applies for probability 

weighting: Underweighting of large probabilities to turn over a loss (gain) card parallels the 

overweighting of small probabilities to turn over a gain (loss) card. Depending on the specific 

game round (i.e., what gain amount, what loss amount, and how many loss cards), the 

functional forms of the value and probability weighting function as well as loss aversion 

contribute to risk taking in a complex interplay. To gain insight into this interplay, we ran 

simulations in which we determined the number of cards an agent would turn over given 

combinations of the three parameter values. 

 The simulations for four exemplary game rounds are illustrated in Figure 3 and show 

that increasing values of parameter  (in the value function) lead to less risk taking in rounds 

in which the loss amount is larger than the gain amount (typically in rounds with few loss 

cards, Figure 3AB). On the other hand, increasing values of  lead to riskier behavior in 

rounds in which the gain amount is larger than the loss amount (typically in rounds with many 

loss cards, Figure 3CD). Similarly, increasing values in parameter  lead to more risk-taking 

behavior in rounds with few loss cards and less risk-taking behavior in rounds with many loss 

cards. In contrast, increases in the loss aversion parameter  always lead to less risk-taking 

behavior. Therefore,  and  can be interpreted as indicators of how sensitively participants 

evaluate differences in outcome magnitudes and probabilities, respectively, and can, 

depending on the type of outcome and probability level, lead to risk aversion or risk seeking, 

paralleling the fourfold pattern of risk attitudes (Kahneman & Tversky, 1992). 

 

                                                 

 
5 Note, that the interpretation of the curvature of the value function in the present case of the CPT-1 model 

differs from its classical EUT interpretation as a direct index of a person’s risk attitude. 
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Figure 3. Interacting effects of parameters and game rounds on risk taking. A-D) In each 

panel, the black bars indicate up to which level (how many cards turned over) risk taking has 

a positive utility. We calculated the number of cards turned over by assuming that an agent 

makes decisions according to CPT-1 for different parameter values that cover the search 

space of the estimation procedure. In each column one parameter is varied (left column: α; 

middle column: η; right column: λ) while holding the other two constant at 1.  

 

Convergent Validity  

The parameter , which accounts for differences in the sensitivity to outcomes, 

showed the most consistent pattern of correlations to self-report measures of risk taking and 

associated trait measures. Specifically,  was positively (although weakly) correlated with the 

reported likelihood of engaging in risky behavior in 4 of the 6 risk domains of the DOSPERT, 
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and it was also positively correlated with the benefits participants would expect in 5 of the 6 

risk domains. In contrast,  correlated with the risk perception scale of the DOSPERT in only 

one domain. This suggests that individuals who are more sensitive to differences in outcomes 

may also perceive more benefits in real-life risky behavior, rather than the potential risks and 

for this reason may report a higher likelihood of taking these risks. Previous research has 

similarly emphasized the role of outcome sensitivity in risk taking. For example, Wallsten et 

al. (2005) found that outcome sensitivity to gains (in that study referred to as ) in the BART 

was predictive of the number of drugs a person had tried, whether he or she had ever stolen 

something, and how often he or she had engaged in unprotected sex in the last year. Similarly, 

Wichary et al. (2015) found that outcome sensitivity in the BART was positively correlated 

with the propensity to engage in various real-world risky activities (e.g., sky diving, 

smoking). In addition, a number of studies have shown that trait sensitivity to reward and/or 

loss as assessed by self-report measures (Carver & White, 1994) is related to risk taking in 

laboratory tasks (Brunborg, Johnsen, Mentzoni, Molde, & Pallesen, 2011; Demaree, 

DeDonno, Burns, & Erik Everhart, 2008; Penolazzi, Gremigni, & Russo, 2012) and real-life 

risk taking such as horse race gambling (Balodis, Thomas, & Moore, 2014).  

Besides the rather consistent pattern of correlations between  and the DOSPERT risk 

taking and benefit scales, we find isolated correlations between  and single DOSPERT 

scales, as well as correlations of  and  with the “disinhibition” sensation-seeking subscale. 

Figner et al. (2009) found that the average number of cards turned over was positively related 

to Need-for-Arousal, a construct related to sensation seeking. We observe no correlation of 

any of the self-report measures either with the number of cards turned over or with the 

number of encountered loss cards. Given this somewhat surprising null-finding, we also 

correlated the overt measures only considering game rounds with 1 or 3 loss cards (the range 

of loss cards described in the current short version of the CCT outlined in Figner & Weber, 

2011); however, again there was no significant relationship (all r < .09) with any of the self-
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report measures.  

 In sum, these results suggest that outcome sensitivity, as captured in the parameter , 

is an important driver of observed behavior in the CCT and seems to correspond with other 

risk-related measures, whereas overt behavior may be less related to risk taking outside the 

CCT (although other explanations are also possible, for example that the newly added game 

rounds or the whole study context with several other similar risk-taking tasks played a role; 

but even if so, our results are consistent with the idea that the CPT decomposition leads to 

more reliable estimates of relevant processes involved in the CCT, compared to using simply 

the overt behavior). 

Future Directions and Applications  

The results of our study should be considered in the light of the finding that for 40% of 

the participants the CP (i.e., constant probability) model was more adequate than the CPT 

model. This shows not only that there is a considerable heterogeneity in directly observable 

risk taking in the CCT, but that participants also differ in their choice strategies, with a 

substantial proportion of the participants only marginally taking into account the information 

presented in the game rounds (see also Figner et al.'s 2009, Pedroni et al., 2017). However, 

this does not necessarily imply that these participants behave randomly. Turning over cards at 

a constant probability yields an accelerating decrease in compound probability, that is they 

have a high probability of turning over the first few cards but then quickly stop turning over 

more cards. Thus, these participants might also have in mind a target for their willingness to 

take risks. Interestingly, post-hoc analyses indicate that following this simple strategy is not a 

particularly bad one, as these participants do not perform worse in terms of their payoff (if the 

outcomes of all game rounds had been paid out in real money) than participants who are 

better described by the CPT-1 model (t(189)= 1.26, p = .21). One possible reason for this may 

be that although they ignored the gain and loss amounts in the respective game rounds, 

overall they turned over fewer cards than participants who were better described by the CPT 
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model (on average 0.52 less cards per round, t(189)= -2.27, p = 0.02). In addition, the model 

comparison, which is based on the individual BICs, does not take into account in which game 

rounds either model better describes their behavior. Our results suggest that the CP-model 

only fits well in game rounds in which just a few cards are turned over (see Figure 2A). In 

contrast, the CPT model is also able to successfully account for behavior in trials in which 

many cards are turned over, which suggests that it is a more encompassing model and should 

be applicable to a wider range of choice situations. 

We further emphasize that the modeling results are by nature influenced by the 

selection of models and thus our conclusions should be considered within this selection. Our 

modeling approach focused on the family of expectation-based models primarily because they 

are the most influential models in economic research. Because the CCT conforms to the 

structure and appeal of commonly applied game-like risk-taking tasks in psychological 

research, modeling the CCT using an expectation-based model makes the psychological 

mechanisms underlying risk taking directly comparable, facilitating the integration of 

research between the two streams of research.  

 To conclude, our study had the goal of bridging the gap between two approaches to 

studying risk taking, by uncovering clearly interpretable mechanisms that underlie decision 

making in a dynamic risk-taking task. We derived a parsimonious expectation-based model, 

reflecting the simplest possible specification of CPT, which made it possible to reveal the 

psychological underpinnings of the characteristic risk-seeking behavior in the CCT. The 

model provides indications for why participants behave in this way and how individual 

differences between participants may be explained. Therefore, our modeling approach may 

offer new possibilities to investigate individual differences in naturalistic risk taking at the 

level of psychological mechanisms. For instance, future studies could explore how sensitivity 

to differences in outcomes and probabilities as well as loss aversion develop across the life 

span. These findings could be integrated with current knowledge on the localization of the 
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neural processes of these aspects and developmental changes in the brain.  

In addition, in combination with the modeling approach, the CCT might be a useful 

tool for studying differences among neuropsychologically and/or clinically distinct 

populations, in a similar spirit to studies that used a model-based approach to decompose 

behavior in the Iowa Gambling Task (IGT) to better understand the specific characteristics in 

decision making in these populations (see, e.g., Yechiam, Busemeyer, Stout, & Bechara, 

2005). In fact, there exist datasets of the CCT that may offer themselves for such purposes, 

such as a recent study of Kluwe-Schiavon, Viola, Sanvicente-Vieira, Pezzi, and Grassi-

Oliveira (2016) that has shown differences in “raw” scores of the CCT between female crack 

cocaine users and adolescents. It would thus be interesting to investigate whether estimated 

model parameters may shed additional insights into how the differences in overt behavior 

come about. Furthermore, we believe that the CCT may be especially suitable for 

investigating decision making in populations that exhibit pronounced risk-seeking behavior, 

such as pathological gamblers. The characteristics of the CCT stimulate risk-seeking 

behavior, because turning over a card is likely experienced as a “pleasurable” action per se 

and may reflect more strongly a default option compared to stopping. Thus, the CCT possibly 

has characteristics that are common to casino situations in which pathological gamblers 

typically take excessive risks when exposed to a multitude of risky options and fail to choose 

the single “safe” option of leaving the casino. 
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Appendix A: Computational Models 

Stochastic Choice 

We begin the description of the applied models with the formalization of the choice 

behavior: The basic observed behavior in the CCT in a specific choice situation i is whether a 

participant turns over a card or ends the current game round and thus cashes the money 

accrued in the current game round. Several studies have shown that choice behavior is 

stochastic, with decision makers not always making the same choice in identical situations, 

and the strength of this inconsistency depending on the differences of the prospects’ 

subjective values (Busemeyer, 1980; Luce & Suppes, 1965; Marley, 2002; Mosteller & 

Nogee, 2006; Rieskamp, 2008). We account for the stochastic nature of choices by applying 

an exponential choice rule, in which the probability of choosing between the subjective value 

of stopping Vi(stop) versus the subjective value of taking a card Vi(take) is modeled as a 

monotonic function of the differences between the prospects’ subjective values: 

𝑝𝑖(𝑡𝑎𝑘𝑒) =
1

1+𝑒𝜃(𝑉𝑖(𝑠𝑡𝑜𝑝)−𝑉𝑖(𝑡𝑎𝑘𝑒))
        (1) 

Hence, it is assumed that a participant evaluates whether the subjective value of taking a card 

Vi(take) is larger than the subjective value to stop at the ith card, Vi(stop). The free parameter  

captures the degree of stochasticity in the choices, with lower values for more stochastic 

choices. 

Expectation-Based Models 

We implemented two variants of how participants may set the reference points for 

their decisions. In the first version, the reference point is updated in each binary take-card 

versus stop decision (DU-reference point). Thus, the subjective value of stopping represents 

no deviation from the status quo and equals zero (see also van Duijvenvoorde et al., 2015).   

DU-reference point: V𝑖(stop) = 0        (2) 
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In the second version, in which the reference point is updated at the beginning of 

every game round (RU-reference point), the subjective value of stopping equals the accrued 

amount of gains, each worth g up to card draw i. As such it follows: 

RU-reference point: V𝑖(stop) = (𝑖𝑔)𝛼+       (3) 

whereas the parameter + modulates the curvature of the subjective value function.  

In the version with the DU-reference point, the subjective value of turning over a card 

is on the one side the possible gain g of the next card, minus the possible loss l if turning over 

a loss card.  

DU-reference point: V𝑖(take) = 𝜋(𝑝𝑖(𝑤𝑖𝑛)) 𝑔𝛼+ − 𝜋(1 − 𝑝𝑖(𝑤𝑖𝑛))𝜆𝑙𝛼−   (4) 

The subjective value of taking a card V𝑖(take) in the RU-reference point version 

reflects on the one side the possible gain of all gains accrued in the current game round i plus 

the next card's worth g, minus the possible loss l if turning over a loss card. CPT distinguishes 

between pure gain lotteries and mixed lotteries (Tversky & Kahneman, 1992). Thus, for 

choice situations in which the expected value of gains minus the expected value of a loss is 

greater than zero or equal zero, the subjective value of drawing another card is given by 

equation (5). 

RU-reference point, pure gain lotteries: 

V𝑖(take) =  𝜋(𝑝𝑖(𝑤𝑖𝑛))((𝑖 + 1)𝑔 )
𝛼+

+ (1 − 𝜋(𝑝𝑖(𝑤𝑖𝑛))) ((𝑖𝑔)𝑎+  − 𝑙𝛼−)   (5) 

If the expected value of gains minus the expected value of a loss is below zero, the 

lottery represents a mixed lottery and the subjective value is given by equation (6).  

RU-reference point, mixed gain lotteries:  

V𝑖(take) = 𝜋(𝑝𝑖(𝑤𝑖𝑛))((𝑖 + 1) 𝑔)𝛼+ − 𝜋(1 − 𝑝𝑖(𝑤𝑖𝑛))𝜆𝑙𝛼−    (6) 

In equations 4 to 6 p(.) refers to the probability weighting function, transforming 

objective probabilities into subjective probabilities. Probabilities are transformed by 

𝜋(𝑝𝑖) = 𝑒−𝛿(− ln 𝑝𝑖)𝜂
 (Prelec, 1998)       (7) 
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with  specifying the inverse (for  < 1) s-shaped transformation of the weighting function. 

The free parameter  accounts for the elevation of the weighting function and reflects a 

general underestimation (if  > 1) or overestimation (if  < 1) of probabilities, which can be 

seen as an indicator of how optimistically a prospect is valued.  

In CPT it is assumed that losses have subjectively more impact on decisions than 

gains. This is implemented in the model by the loss aversion parameter  in equation 4 and 6. 

Finally, the probability to win 𝑝𝑖(𝑤𝑖𝑛) is determined by the number of loss cards nl 

and the number of cards already turned over (i-1) in a game round: 

𝑝𝑖(𝑤𝑖𝑛) = 1 −
𝑛𝑙

32−(𝑖−1)
         (8) 

Likelihood Function 

To fit the CPT-model to observed data and to estimate the parameter values that are 

most consistent with the decision makers’ behavior, the parameters are connected to the data 

via the likelihood function. The likelihood function takes an identical structure as in other 

dynamic risk tasks such as the BART (Wallsten et al., 2005). For the fully specified CPT 

model, the probability of the data, p(D|+  −  +  −  +  −    ) for all trials nk, and 

for all draws within each game round, ni(k) , depends on the probability that the decision maker 

will turn over another card for each game round k for each opportunity i to take a card. 

𝑝(𝐷|α+, α−, η+, η−, δ+, δ−, λ, θ) = ∏ ∏ 𝑝𝑘𝑖
𝑡𝑎𝑘𝑒 (1 − 𝑝𝑘,𝑛𝑖(𝑘)+1

𝑡𝑎𝑘𝑒 )
𝑑𝑘𝑛𝑖(𝑘)

𝑖=1
𝑛𝑘
𝑘=1    (9) 

where dk = 1 if the decision maker stopped on opportunity i and dk = 0 if the decision maker 

has turned over a loss card on trial k. This quantity is basically the product of all probabilities 

that the decision maker will turn over a card times one minus this probability on the occasions 

where the decision maker stopped. 

Constant Probability Model 

The constant probability model does not involve psychological processing but 

assumes that the participants ignore all information but turn over cards at a constant 
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probability in all game rounds. Therefore, this model contains only one free parameter, 

pik(take), which is estimated from the data via maximum likelihood estimation for each 

participant as in equation 9 (cf. Wallsten et al., 2005).
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Appendix B. Model Comparison 

 Table B1. Model Comparisons indicating the number of free parameters (df), the mean BIC and 

deviance (DEV), the number of participants for whom the respective model has the lowest BIC (nr. b. fit), the 

average rank of each model with respect to the BIC (rank; lower numbers indicate a better fit for more 

participants), as well as the explained variance (R2). 

  Model   df BIC DEV nr. b. fit rank R2 

                    

D
ec

is
io

n
-u

p
d
at

ed
 (

D
U

) 
re

fe
re

n
ce

 p
o
in
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  EV  1 604.0 599.6 0 26.6 0.11 

  EUT   2 265.6 252.4 5 12.5 0.47 

  CPT-1     4 216.9 199.2 73 4.3 0.47 

  CPT-2      5 215.3 193.1 45 3.6 0.49 

  CPT-3   + −   6 217.4 190.9 4 6.0 0.50 

  CPT-4  + −   5 219.0 196.8 1 6.9 0.48 

  CPT-5  + −     6 217.6 191.0 3 6.4 0.49 

  CPT-6  + − + −   7 221.6 190.6 0 10.2 0.48 

  CPT-7 + −    5 214.0 191.9 31 3.9 0.50 

  CPT-8 + −     5 215.4 188.9 13 5.4 0.51 

  CPT-9 + −  + −   7 218.1 187.1 2 8.2 0.51 

  CPT-10 + − + −   6 216.9 190.3 11 7.1 0.50 

  CPT-11 + − + −    7 218.0 187.0 1 8.1 0.53 

  CPT-12 + − + − + −   8 222.1 186.6 0 11.1 0.53 
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  EV  1 611.3 606.9 0 27.6 0.09 

  EUT   2 580.8 567.5 1 26.0 0.10 

  CPT1     4 470.3 452.5 0 20.3 0.23 

  CPT2      5 455.5 433.4 1 15.2 0.22 

  CPT3   + −   6 457.4 430.8 0 16.7 0.23 

  CPT4  + −   5 474.4 452.2 0 22.6 0.23 

  CPT5  + −     6 459.7 433.1 0 18.8 0.24 

  CPT6  + − + −   7 461.5 430.5 0 20.6 0.22 

  CPT7 + −    5 461.3 439.2 0 18.5 0.25 

  CPT8 + −     5 457.3 430.8 0 16.5 0.23 

  CPT9 + −  + −   7 459.8 428.8 0 18.8 0.23 

  CPT10 + − + −   6 465.1 438.5 0 21.2 0.26 

  CPT11 + − + −    7 461.4 430.4 0 20.6 0.22 

  CPT12 + − + − + −   8 464.0 428.5 0 22.2 0.22 
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Figure B1. Parameter recovery of the models with the lowest mean BIC rank. The green 

circle depicts the input (median parameter estimate across participants for the respective 

model) for the recovery; the red cross indicates the median of the re-estimated parameters. 

The estimated parameters of the CPT-1-model are reasonably well recovered (i.e., unbiased 

and with low variance). In the CPT-2 model the parameter estimates are unbiased but  is 

estimated with a large variance, spanning the whole search space. In the CPT-7 model, − and 

 are biased and show substantial variance.  
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Appendix C 

 

Table C1. Experimental design of the game rounds. R = game round, G = gain amount, L = loss amount, NLC = 

number of loss cards. 

R G L NLC  R G L NLC  R G L NLC  R G L NLC 

                   

1 150 75 20  22 10 500 1  43 20 750 1  64 400 100 20 

2 50 100 1  23 300 150 20  44 300 50 20  65 50 250 1 

3 200 100 10  24 20 100 1  45 150 100 10  66 20 500 3 

4 200 50 28  25 150 50 16  46 150 100 10  67 600 50 28 

5 20 750 1  26 200 50 20  47 300 100 20  68 20 100 3 

6 300 100 16  27 50 100 3  48 10 750 3  69 20 500 3 

7 10 500 3  28 300 100 20  49 50 750 1  70 150 50 20 

8 10 250 1  29 20 500 1  50 20 750 3  71 75 50 10 

9 50 750 3  30 10 250 1  51 600 150 28  72 200 100 20 

10 50 250 1  31 100 50 10  52 50 100 1  73 150 50 20 

11 300 100 16  32 10 500 3  53 20 250 3  74 20 250 3 

12 600 300 28  33 100 50 20  54 50 750 1  75 600 50 28 

13 10 250 3  34 20 250 1  55 20 100 1  76 75 50 16 

14 50 500 3  35 20 250 1  56 10 500 1  77 10 100 1 

15 10 250 3  36 150 50 16  57 10 100 3  78 50 250 3 

16 10 750 1  37 20 100 3  58 300 50 28  79 50 500 1 

17 20 750 3  38 10 750 1  59 150 100 16  80 10 100 1 

18 10 750 3  39 100 50 10  60 75 50 16  81 150 100 16 

19 75 50 10  40 50 750 3  61 200 100 10  82 50 500 1 

20 150 25 20  41 50 500 3  62 600 100 28  83 100 50 28 

21 10 100 3  42 50 100 3  63 20 500 1  84 50 250 3 
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