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Benefits/advantages of mixed models:  

Mixed models offer several advantages (compared to, for example, linear regression or 

ANOVA-type approaches), notably accounting for the nested structure of data, for example 

in cases such as repeated measures within individuals, participants grouped in classes, 

repeated measures within stimuli, or combinations thereof. This is crucial as neglecting such 

nesting can result in correlated errors, violating standard regression model assumptions and 

therefore likely to untrustworthy results, for example due to inflated Type 1 errors. 

Furthermore, mixed models handle missing data more gracefully, not automatically 

excluding whole sets of data points (e.g., participants) from analyses as long as the missing-

at-random assumption holds. Additionally, by capturing variability between groups (e.g., 

subjects), mixed-effects models can enhance statistical power. In summary, they provide a 

robust framework for analyzing the intricate data structures prevalent in diverse fields like 

psychology, biology, neuroscience, education, and economics. 

 

How to read this document: 

The structure of this SOP parallels the steps that we usually go through when doing 

research. Thus, the first section covers study planning, including statistical power analyses. 

Next, we consecutively cover data preparation, running a mixed-effects model, model 

diagnostics (which we inspect before inspecting our model results), inferring significance, 

post-hoc/follow-up tests, and reporting the results. Finally, the Appendix includes more 

detailed information or R code for some of the steps described in the main document.  

 

The SOP provides a description of the approaches that we, in our lab (https://decision-

lab.org), usually take when using mixed-effects models for our research. We believe these 

approaches to be well-suited for our situations. Nevertheless, this document is not meant to 

be an exhaustive overview of all possible approaches. Thus, other approaches may also be 

feasible and plausible. In some of these cases, we refer to other resources for further 

reading. Moreover, sometimes, we do not all use the same approach within the lab. In these 

cases, we try to describe the various possible approaches that we use in the lab. 

 

Please keep in mind that first and foremost, we created this document for ourselves in our 

own lab, for the type of studies and analyses that we typically do. However, we were happy 

to hear from other people outside of our lab that they found our SOP helpful. That means, 

however, that of course your views, thoughts, best-practices, etc might be different from 

ours, and this is of course completely fine! In case you want to get in touch with us to give us 

input or feedback or found inaccuracies or mistakes, please feel free to do so. 
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1. Before data collection:  

Power/ design/ planning/ sample size 

Before starting data collection, whenever possible, we make use of power analysis, 

sensitivity analysis, and/or employ sequential sampling or other stopping rules to achieve an 

adequate sample size. A set of different approaches and tools for sample size calculation 

and planning the design is introduced below. Whatever approach from the list below is 

chosen, we strongly recommend taking this part seriously and pre-registering the sampling 

plan. In our lab, we do not all agree on one specific method. That’s why we don’t have a 

single recommendation for one method (and sometimes sample sizes are simply determined 

by logistical constraints such as time or money; but even in these cases, power 

considerations are often helpful, for example to help decide whether or not to conduct that 

study at all, given the logistical constraints).  

1.1. Power analysis 

There are several approaches and tools for power analysis in mixed-effects models (some 

tools are similar to software like G*Power). Here, we group them into three general 

approaches: Simulation-based power analyses from scratch, simulation-based power 

analyses based on estimates from previously collected data, and power analysis tools / 

apps. We explain each of these approaches below (see section 1.1.3). First, however, we 

have two notes in advance (if you are looking for information on standardized effect sizes, 

please go to section 7.3).  

1.1.1. What are you powering for? 

Power can be defined as the probability of achieving the goal of a planned study, if a 

suspected underlying state of the world is true. Traditionally, in NHST research, the goal of a 

study is to reject the null hypothesis. Consequently, the traditional definition of power is the 

probability of rejecting the null hypothesis when the null hypothesis is false. However, 

alternative study goals exist, such as the goal to accept the null hypothesis (e.g., Kruschke, 

2018; Lakens, 2017), or the goal to achieve a desired level of precision in the estimation of 

an effect (Kruschke, 2015, Chapter 13). We encourage researchers to think carefully about 

their study goal, and to power accordingly. Although the targets of statistical power differ per 

goal, the basic principles of power analyses are the same, and the approaches outlined 

below therefore generally apply to all of these. In section 1.3, we briefly elaborate on the 

possibilities of using a sequential sampling approach when powering for precision. In section 

1.4, we briefly elaborate on powering for a null effect. 

 

1.1.2. Obtaining informed estimates as input for power analyses  
What makes informative power analyses for mixed-effects models more complicated 

compared to power analyses for simpler statistical models is that they require input for many 

more parameters. That is, one does not have just one fixed effect (as would be the case in, 

e.g., a t-test), but one has multiple fixed and random effects. Even if one is only powering for 

one effect of interest, using well-informed estimates for all other effects is typically also 

important to be able to conduct an informative power analysis. Given that coming up with 

https://journals.sagepub.com/doi/10.1177/2515245918771304
https://journals.sagepub.com/doi/10.1177/2515245918771304
https://journals.sagepub.com/doi/10.1177/1948550617697177
https://nyu-cdsc.github.io/learningr/assets/kruschke_bayesian_in_R.pdf
https://nyu-cdsc.github.io/learningr/assets/kruschke_bayesian_in_R.pdf
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only one well-informed fixed effect size or precision estimate can already be challenging, 

coming up with many different fixed and random effect estimates is even more complicated. 

Here are a few tips that might be helpful to obtain informed estimates:  

 

• Use estimates from previous research, for instance studies that used a similar 

design, or a meta-analysis. A limitation of this approach is that even if papers and 

meta-analyses provide detailed information on their fixed effects, they usually do not 

provide much, if any, information regarding random effects. Therefore, if possible, try 

to obtain the raw data from previous studies, allowing you to run your mixed-effects 

model on these data to get an idea about random effects estimates.   

• Collect pilot data, run your mixed-effects models on the pilot data, and use the 

parameter estimates from the pilot data as basis for a power analysis. If you have the 

resources to collect pilot data, we highly recommend doing so, because, in addition 

to other benefits of running pilot studies, it provides you with estimates for fixed and 

random effects. Note that the uncertainty around your estimates increases as the 

sample size of the pilot study decreases, and a small pilot study will have lots and 

lots of uncertainty around these estimates. Nevertheless, the estimates may give you 

an idea at least of the ballpark that one is in regarding the effects (which may be 

especially helpful for random effects). Try to incorporate this uncertainty into your 

power analysis (see, e.g., the section on power analyses using brms) or rerun your 

power analysis for different effect sizes.  

• Determine the smallest effect size of interest (SESOI). This can be based on 

theoretical considerations and/or practical considerations. In our experience, 

determining a SESOI is easier when thinking about the raw (unstandardized) effect 

instead of a standardized effect. We try not to use so-called “T-shirt effect sizes”, i.e., 

universally accepted “small” (e.g., Cohen’s d of 0.2), “medium” (Cohen’s d of 0.5), 

and “large” (Cohen’s d of 0.8) effects. These effect sizes are often not informed, and 

e.g., a “medium” effect size is often unrealistically large for most psychology studies. 

More realistic effect sizes in psychology often seem to be in ballpark of d = .15 to .4 

(see, e.g., Brysbaert, 2019 for references of replication studies finding quite different 

average effect sizes; effect sizes can vary of course also substantially depending on 

the research field and the study design). If, as a last resort, we do end up using a T-

shirt effect size as input for a power analysis (because we do not have a more 

informed effect-size estimate), we tend to be conservative and use a “small” effect 

size. 

1.1.3. Three general approaches to power analyses  

Below, we describe general approaches to power analyses that we use in the lab. All of 

these approaches are used in our lab; which approach we use depends on the complexity of 

the mixed-effects model, time constraints, and the experience the specific researcher has 

with simulating data.  

The first approach is creating your own simulation-based power analysis from scratch. 

The basic idea behind a simulation-based power analysis is that one simulates many 

datasets, runs the mixed-effects model on all these datasets, and checks how often the 

effect of interest is statistically significant. If, for instance, it is significant 90% of the time, one 

has a power of 90%. Doing a simulation-based power analysis from scratch is flexible and 

recommended for situations where more control over the parameter space (e.g., about the 

https://online.ucpress.edu/collabra/article/8/1/33267/120491/Sample-Size-Justification


Standard Operating Procedures For Using Mixed-Effects Models 

7 

 

sampling errors) is wanted or when the other tools/apps (explained below) are not sufficient. 

However, since the simulations are created from scratch, this approach can become very 

complex as the model complexity increase.  

There are several noteworthy resources regarding this approach, including: 

● Julian Quandt wrote a comprehensive four-part blog post including R code on how to 

simulate a power analysis from scratch, starting with t-tests and ending with linear 

mixed-effects models.  

● A very short step-by-step guide by Ben Bolker, best suited for people already familiar 

with data simulation. 

● Another brief tutorial for custom simulations by Tood Jobe  

● A tutorial paper by Tom Snijders 

● SimDesign is an R package that provides flexible Monte Carlo based simulation 

framework. Organizing simulations can be a challenge, particularly to those new to 

the topic, where all too often coders resort to the inefficient and error prone strategies 

(e.g., the dreaded “for-loop” strategy, forever resulting in confusing, error prone, and 

simulation-specific code). The package SimDesign is one attempt to fix these and 

other issues that often arise when designing Monte Carlo simulation experiments, 

while also providing a templated setup that is designed to support many useful 

features when evaluating simulation research. 

● simstudy, an R package for simulation-based power analysis (or, more generally, for 

simulating data) which can handle also more complex and clustered data (e.g., 

patients nested in therapists, in clinics, etc; it has the possibility to introduce different 

types of missingness, etc); see also helpful example blog post here on how to best 

do pre/post comparisons with treatment and control group: 

https://www.rdatagen.net/post/thinking-about-the-run-of-the-mill-pre-post-analysis/  

(but note that some authors showed using simulations that using pre-treatment 

measures as predictors for post-treatment outcomes can lead to inflated Type 1 

errors if the pre-treatment measure correlates with another continuous covariate in 

the model; thus, proceed with caution and read up on the latest insights on this 

issue!) 

● longpower, an R package for power-simulation of longitudinal data.  

● Optimal design, a software to find the optimal research design. 

● MLPowSim, an extensively annotated software for power simulation of mixed-effects 

models (https://sites.google.com/site/optimaldesignsoftware/home) 

 

The second approach is largely similar to the first approach, but it makes use of previously 

collected data to inform you about the parameters to use in the power simulations. That is, 

we run our mixed-effects model on previously collected data and use the estimates from this 

model. The advantage of this approach is that you do not have to come up with the effect 

estimates yourself, which becomes more helpful once the complexity of the model (and with 

that, the number of model parameters) increases.  

 

You could still, of course, use the estimates from previous research as input for a simulation-

based power analysis that you created from scratch. Alternatively, however, some packages 

exist that help you do a simulation-based power analysis after you run your model on 

previously collected data such as simr, an R package for calculating power for generalized 

linear mixed models, using simulation. 

https://julianquandt.com/post/power-analysis-by-data-simulation-in-r-part-i/
https://julianquandt.com/post/power-analysis-by-data-simulation-in-r-part-i/
http://rpubs.com/bbolker/11703
https://toddjobe.blogspot.com/2009/09/power-analysis-for-mixed-effect-models.html
https://www.stats.ox.ac.uk/~snijders/PowerSampleSizeMultilevel.pdf
https://cran.r-project.org/web/packages/SimDesign/vignettes/SimDesign-intro.html
https://cran.r-project.org/web/packages/SimDesign/vignettes/SimDesign-intro.html
https://cran.r-project.org/web/packages/SimDesign/vignettes/SimDesign-intro.html
https://cran.r-project.org/web/packages/simstudy/index.html
https://www.rdatagen.net/post/thinking-about-the-run-of-the-mill-pre-post-analysis/
https://doi.org/10.3389/fams.2018.00064
https://cran.r-project.org/web/packages/longpower/longpower.pd
https://sites.google.com/site/optimaldesignsoftware/home
http://www.bristol.ac.uk/cmm/learning/multilevel-models/samples.html#mlpowsim
https://sites.google.com/site/optimaldesignsoftware/home
https://doi.org/10.1111/2041-210X.12504
https://doi.org/10.1111/2041-210X.12504
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Brms, a Bayesian R package (which can also be used for frequentist inference, such as Null 

Hypothesis Significance Tests). This package allows you to enter estimates from previously 

collected data, and/or your own expectations, as prior information, simulate those priors, and 

predict values for the outcome variable using these priors. Uncertainty about the estimates 

can be incorporated through, e.g., the standard deviation of the prior distribution. This power 

analysis approach is explained in more detail in Appendix C of blog post IV by Julian 

Quandt. It should be noted that power is not really a Bayesian concept. Nevertheless, we 

have experienced this approach as an accessible form of simulation-based power analysis, 

reducing the number of things one has to simulate or code manually. Note that the structure 

of the data set still has to be simulated manually. This is facilitated by the function 

generate_design() that Julian created, also explained in blog post IV.  

 

Another approach which is less flexible, but perhaps easier to use is applying power 

analysis tools/apps such as: 

● Power Analysis with crossed random effects by Jake Westfall for a design where, 

e.g., subjects and items are both random factors.  

● Power Analysis with two random factors (crossed or nested) by Jake Westfall for 

similar purposes as the previous one, but more flexible.  

● PANGEA, a comprehensive App by Jake Westfall for mixed ANOVA designs, in 

which within and/or between subject factors are present and factors can be nested in 

multiple levels.  

● Simulating for LMEM, an app by Lisa DeBruine for power quasi-simulations in which 

each parameter of the model can be adjusted using a slider (allows for random 

factors for subjects and items). 

○ R code by Lisa DeBruine for flexible data simulation 

○ Tutorial paper by Lisa DeBruine and Dale Barr for flexible data simulation 

(including logistic mixed-effects regression) 

○ Tutorial paper by Brysbaert (2019; see also Brysbaert and Stevens, 2018): 

It’s not focused on mixed-effects models, but simpler analysis approaches, 

but still informative and also touching upon mixed-effects models.  

 

If none of the approaches described above is suited and/or feasible, but we do want to 

obtain an estimate of the rough sample size we need for our study, we may do an extremely 

rough power analysis for a repeated measures ANOVA, for example using G*Power or 

something similar.  

 

Lastly, for direct replications, Murayama, Usami, and Sakaki have argued to just use the t-

test of the respective effect of a previous study and compute power as for a one-sample t-

test. Another approach for direct replications is the “small telescopes” approach by 

Simonsohn (2015) which means using 2.5 times the sample size of the original study. 

1.2. Sensitivity analysis 

In some contexts, it might be useful to use sensitivity analysis rather than power analysis. 

Sensitivity analysis takes a given sample size (and other relevant information such as 

number of trials, number of stimuli in the case of random effects for stimuli, etc.) as input and 

https://julianquandt.com/post/power-analysis-by-data-simulation-in-r-part-iv/#appendices
https://jakewestfall.shinyapps.io/crossedpower/
https://jakewestfall.shinyapps.io/two_factor_power/
https://jakewestfall.shinyapps.io/pangea/
https://jakewestfall.shinyapps.io/pangea/
https://debruine.github.io/lmem_sim/
https://osf.io/3cz2e/
https://osf.io/3cz2e/
https://psycnet.apa.org/record/2022-22670-001
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computes which effect sizes could be detected with a certain power given the sample size 

(in contrast, conventional power analysis takes expected effect sizes as input and computes 

the required sample size). Recently, some journals, e.g., the Journal of Experimental Social 

Psychology, have adopted the approach to ask for sensitivity analyses as a more objective 

alternative to the rather subjective choice of expected effect size estimates. Furthermore, 

sensitivity analysis appears to be more realistic in projects with limited budgets and/or time 

constraints, e.g., student projects. If a sensitivity analysis with the maximum possible sample 

size (given the resources) yields a minimally statistically detectable effect that seems 

reasonable, the study can be conducted; otherwise, this might be an indication that the 

research design and/or research question(s) need to be changed. In cases where the budget 

or time constraints are less strict, power analysis may be conducted with the tools described 

above. 

1.3. Sequential sampling with stopping rules 

Other approaches include flexible sampling plans that allow for sequential sampling until a 

stopping criterion is met. Kruschke (2015; Chapter 13) showed that this approach is 

unbiased when the precision of the parameter estimate of interest is taken as stopping 

criterion (compared to when taking e.g., a critical p-value or Bayes Factor as stopping 

criterion, which may result in serious biases – but see the resources below for more detailed 

discussions on the use of Bayes Factors as stopping criterion, including work from 

proponents of this criterion). When sampling for precision, one determines (and pre-

registers) a precision criterion a priori, and continues sampling until the precision has been 

achieved. This precision criterion is often reflected by the width of the confidence or credible 

interval, and applies to both frequentist and Bayesian analyses. The stopping criterion can 

also be combined with pragmatic stopping criteria, such as time or budget constraints, which 

may be particularly relevant for, e.g., student projects. An advantage of sampling for 

precision is it does not require an a priori estimate of the effect size. However, one does 

need to determine the precision criterion a priori. The tips in section 1.1.2 can also be 

applied here, although we encourage researchers to not simply use the precision obtained in 

previous studies as criterion, but to also consider the desired precision criterion. Finally, we 

wish to note that power analyses for precision can also be done a priori, instead of using a 

sequential sampling approach.  

 

Relevant resources on sequential sampling are: 

● This blog post by Geoff Cumming 

● This blog post by John Kruschke about optional stopping in a Bayesian context 

●  de Heide, R., & Grünwald, P. D. (2021). Why optional stopping can be a problem for 

Bayesians. Psychonomic Bulletin & Review, 28, 795–812. 

https://doi.org/10.3758/s13423-020-01803-x 

● Kelley, K., Darku, F. B., & Chattopadhyay, B. (2018). Accuracy in parameter 

estimation for a general class of effect sizes: A sequential approach. Psychological 

Methods, 23(2), 226.  

https://psycnet.apa.org/record/2017-15257-001 

● Lakens, D. (2014). Performing high‐powered studies efficiently with sequential 

analyses. European Journal of Social Psychology, 44(7), 701-710. 

https://onlinelibrary.wiley.com/doi/full/10.1002/ejsp.2023 

https://online.ucpress.edu/collabra/article/8/1/33267/120491/Sample-Size-Justification
https://thenewstatistics.com/itns/2018/06/22/precision-for-planning-great-new-developments/
http://doingbayesiandataanalysis.blogspot.com/2013/11/optional-stopping-in-data-collection-p.html
https://doi.org/10.3758/s13423-020-01803-x
https://psycnet.apa.org/record/2017-15257-001
https://onlinelibrary.wiley.com/doi/full/10.1002/ejsp.2023?casa_token=bCVLJLWO-ikAAAAA%3ASrl4PupvvQgsju1HGDKzxEbdJNfNFvVubwnVwiYszX-4ZfISOU7mwFLfgo46L_3jjspwJgEtkCHZaRgT
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● Rouder, J. N. (2014). Optional stopping: No problem for Bayesians. Psychonomic 

Bulletin & Review, 21(2), 301-308. https://link.springer.com/article/10.3758/s13423-

014-0595-4 

● Schönbrodt, F. D., Wagenmakers, E. J., Zehetleitner, M., & Perugini, M. (2017). 

Sequential hypothesis testing with Bayes factors: Efficiently testing mean differences. 

Psychological methods, 22(2), 322. https://psycnet.apa.org/record/2015-56330-001 

● Schönbrodt, F. D., & Wagenmakers, E. J. (2018). Bayes factor design analysis: 

Planning for compelling evidence. Psychonomic Bulletin & Review, 25(1), 128-142. 

https://link.springer.com/article/10.3758/s13423-017-1230-y 

● For a more critical view, see this blogpost by Richard Morey: 

https://medium.com/@richarddmorey/power-and-precision-47f644ddea5e 

1.4. Powering for a null effect 

Sometimes, one might want to show evidence that there is no effect, or that two treatments 

or groups are the same in their scores on some measure. In these cases, one seeks to 

accept, rather than reject the null hypothesis. However, showing that there is no statistically 

significant effect, or no statistically significant difference between groups, is not sufficient 

evidence for the null hypothesis (in other words, absence of evidence is not evidence of 

absence). Evidence for the null hypothesis can be acquired using equivalence tests, which 

also need to be sufficiently powered:  

• In a frequentist equivalence test (Lakens 2017), one first establishes an equivalence 

range, consisting of values that one considers equivalent to the null, or that one 

considers negligible (bounded by the SESOI). See also 1.1.2 for more information 

about SESOIs. One subsequently performs two one-sided significance tests: one to 

show that the effect is significantly smaller than the upper bound of the equivalence 

range, and one to show that the effect is significantly larger than the lower bound of 

the equivalence range. If both are significant, this can be interpreted as equivalent to 

a negligible effect or null-effect, given the specified SESOI / equivalence range. If the 

p-value criterion of the two one-sided tests is < .05, this is equivalent to testing 

whether the 90% CI falls within the equivalence range. 

• In a Bayesian ROPE test, the equivalence range is termed a Region of Practical 

Equivalence (ROPE). One examines how much of the posterior distribution, or the 

Highest Density Interval (HDI) of the effect of interest falls inside the ROPE, taking 

this as a measure of evidence for the null effect (see Kruschke 2018, and Makowski 

et al. 2019, for several criteria). Several of us prefer ROPE tests as these allow us to 

more quantitatively express the support for/against the null. 

  

Some tools are available for conducting power analyses for equivalence tests, such as the 

toster package in R (there also used to be the BEST package, but this has been removed 

from CRAN and might be deprecated). For determining equivalence in mixed-effects models 

and power of such a design, see also this blog. We think, however, that for mixed-effects 

models, simulation-based power analyses are a better choice here, as they provide the 

amount of flexibility required for mixed-effects models.   

https://link.springer.com/article/10.3758/s13423-014-0595-4
https://link.springer.com/article/10.3758/s13423-014-0595-4
https://psycnet.apa.org/record/2015-56330-001
https://link.springer.com/article/10.3758/s13423-017-1230-y
https://medium.com/@richarddmorey/power-and-precision-47f644ddea5e
https://pubmed.ncbi.nlm.nih.gov/7647644/
https://pubmed.ncbi.nlm.nih.gov/7647644/
https://journals.sagepub.com/doi/10.1177/1948550617697177
https://journals.sagepub.com/doi/10.1177/2515245918771304
https://www.frontiersin.org/articles/10.3389/fpsyg.2019.02767/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2019.02767/full
https://cran.rstudio.com/web/packages/TOSTER/vignettes/IntroductionToTOSTER.html
https://cran.rstudio.com/web/packages/TOSTER/vignettes/IntroductionToTOSTER.html
https://jkkweb.sitehost.iu.edu/BEST/
https://pedermisager.org/blog/mixed_model_equivalence/


Standard Operating Procedures For Using Mixed-Effects Models 

11 

 

1.4.1 ROPE test versus Bayes Factors  

When doing Bayesian analyses, people sometimes also use Bayes Factors to quantify 

evidence for a null effect (we have even seen examples where authors first conduct a 

frequentist significance test and in the cases where it is non-significant, they then report a 

BF in support of the null; we think this is a very bad idea). Some of us advise against using 

Bayes Factors approach, unless one uses very well-informed priors and is familiar and OK 

with the properties of BFs (which at least to some of us are rather unappealing, as nicely 

described in a series of data colada blog posts: https://datacolada.org/78). Instead, we prefer 

a ROPE test. Our reason for this preference is twofold. First, the ROPE test uses the 

posterior distribution to evaluate the evidence for the null value, which is generally robust to 

the choice of prior distribution (Kruschke, 2013; Wagenmakers et al., 2010). Bayes Factors, 

in contrast, do not rely on the posterior distribution, but reflect the ratio of the marginal 

likelihoods of the null and alternative model. These marginal likelihoods are extremely 

sensitive to the choice of prior distribution, and using a weakly informative prior to convey a 

state of minimal prior knowledge will result in Bayes Factors, but not posterior distributions, 

that are biased towards the null model (Kruschke & Liddell, 2018; Rouder et al., 2012; Schad 

et al., 2022; Tendeiro & Kiers, 2019; Wagenmakers et al., 2010). Thus, if we do not have a 

strong theory regarding our prior distributions, we favor the approach that is more robust to 

the choice of prior distribution, and that allows for the use of a weakly informative prior (as 

recommended by e.g., Kruschke & Liddell, 2018; Liao et al., 2021; Makowski et al., 2019). 

Second, when visualizing the posterior distribution in relation to the ROPE, one can 

communicate information about the uncertainty of the parameter estimate (reflected by the 

width of the posterior distribution) in a more explicit and transparent manner compared to 

Bayes Factors (Kruschke, 2013). A more detailed discussion of this matter can be found in 

the Appendix.  

1.5. More reading suggestions 

More literature on power analysis: 

● Brysbaert, M. (2019). Power analysis and effect size in mixed effects models: A 

tutorial. Journal of Cognition, 2(1). 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6640316/ 

● Brysbaert, M., & Stevens, M. (2018). Power analysis and effect size in mixed effects 

models: A tutorial. Journal of Cognition, 1(1). 

http://www.journalofcognition.org/articles/10.5334/joc.10/  

● Correll, J., Mellinger, C., McClelland, G. H., & Judd, C. M. (2020). Avoid Cohen’s 

‘small’, ‘medium’, and ‘large’ for power analysis. Trends in Cognitive Sciences. 

https://www.sciencedirect.com/science/article/abs/pii/S1364661319302979 

● Lane, S. P., & Hennes, E. P. (2018). Power struggles: Estimating sample size for 

multilevel relationships research. Journal of Social and Personal Relationships, 

35(1), 7-31. http://journals.sagepub.com/doi/10.1177/0265407517710342  

● Lakens, D. (2022). Sample size justification. Collabra: Psychology (2022), 8(1), 

Article 33267. https://doi.org/10.1525/collabra.33267  

 

For more information about boosting power by increasing the number of trials or number of 

stimuli (under certain conditions), see: 

https://datacolada.org/78
https://jkkweb.sitehost.iu.edu/articles/Kruschke2013JEPG.pdf
https://www.sciencedirect.com/science/article/pii/S0010028509000826
https://pubmed.ncbi.nlm.nih.gov/28176294/
https://www.sciencedirect.com/science/article/pii/S0022249612000806?via%3Dihub
https://psycnet.apa.org/record/2022-39838-001
https://psycnet.apa.org/record/2022-39838-001
https://psycnet.apa.org/record/2019-26880-001?doi=1
https://www.sciencedirect.com/science/article/pii/S0010028509000826
https://pubmed.ncbi.nlm.nih.gov/28176294/
https://www.tandfonline.com/doi/full/10.1080/00031305.2019.1701550
https://www.frontiersin.org/articles/10.3389/fpsyg.2019.02767/full
https://jkkweb.sitehost.iu.edu/articles/Kruschke2013JEPG.pdf
http://www.journalofcognition.org/articles/10.5334/joc.10/
https://www.sciencedirect.com/science/article/abs/pii/S1364661319302979?fbclid=IwAR1qyaySXo29uGON5gKqNQvUfaeGCzwK3MC22bLOJA4gz3WK32iuW-bgmHM
http://journals.sagepub.com/doi/10.1177/0265407517710342
https://doi.org/10.1525/collabra.33267
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●  Baker, D. H., Vilidaite, G., Lygo, F. A., Smith, A. K., Flack, T. R., Gouws, A. D., & 

Andrews, T. J. (2021). Power contours: Optimising sample size and precision in 

experimental psychology and human neuroscience. Psychological Methods, 26(3), 

295–314. https://doi.org/10.1037/met0000337  

○ Associated App: https://shiny.york.ac.uk/powercontours/ 

● Boudewyn, M. A., Luck, S. J., Farrens, J. L., & Kappenman, E. S. (2018). How many 

trials does it take to get a significant ERP effect? It depends. Psychophysiology, 

55(6), e13049. http://doi.wiley.com/10.1111/psyp.13049   

● Rouder, J. N., & Haaf, J. M. (2018). Power, dominance, and constraint: A note on the 

appeal of different design traditions. Advances in Methods and Practices in 

Psychological Science, 1(1), 19-26. 

https://journals.sagepub.com/doi/full/10.1177/2515245917745058 

● Westfall, J., Kenny, D. A., & Judd, C. M. (2014). Statistical power and optimal design 

in experiments in which samples of participants respond to samples of stimuli. 

Journal of Experimental Psychology: General, 143(5), 2020.  

https://psycnet.apa.org/doi/10.1037/xge0000014  

 

For an extensive paper on Bayesian design planning:  

● Schad, D. J., Betancourt, M., & Vasishth, S. (2019). Toward a principled Bayesian 

workflow in cognitive science. arXiv preprint arXiv:1904.12765. 

http://arxiv.org/abs/1904.12765 

2. Preparing data  

2.1. Categorical variables 

We most commonly use sum-to-zero coding for categorical predictors (via the 

options(contrasts = c(“contr.sum”, ”contr.poly”)) for factors. We use this 

coding scheme because we are typically interested in main effects and main interactions 

rather than simple effects or simple interactions (see also this blog post by Dale Barr; the link 

seems to be dead at the time of finishing this SOP version? But it's still available via this 

URL here: 

https://web.archive.org/web/20230103224304/https://talklab.psy.gla.ac.uk/tvw/catpred/). One 

option is also to use the command mixed()from the package afex, as it will automatically 

set all contrasts to sum-to-zero. Some of us prefer a -0.5/+0.5 coding scheme instead of the 

default -1/+1 coding, for ease of interpretation of the regression coefficients. 

 

Other reasons to deviate might include the use of custom contrasts to test specific 

hypotheses (see section 6.4.2); an approach that we think is underused. 

 

We usually will follow-up on significant effects involving factors with more than two levels by 

either restricting analyses to only two levels in the form of follow-up models (i.e., analyzing a 

subset of the data comprising only two levels of the given factor) or, alternatively, we use 

some post-hoc procedures, e.g., using the package emmeans (for more details on both, see 

the section on post-hocs and follow-ups below). Note that in brms, it is also possible to 

model monotonic effects of ordinal predictors (Bürkner, P. C., & Charpentier, E. (2020), 

https://shiny.york.ac.uk/powercontours/
http://doi.wiley.com/10.1111/psyp.13049
https://journals.sagepub.com/doi/full/10.1177/2515245917745058
https://psycnet.apa.org/doi/10.1037/xge0000014
http://arxiv.org/abs/1904.12765
http://talklab.psy.gla.ac.uk/tvw/catpred/
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Modelling monotonic effects of ordinal predictors in Bayesian regression models. British 

Journal of Mathematical and Statistical Psychology, 73(3), 420-451), which some of us like 

to use. 

2.2. Continuous variables 

As a default, we typically use mean-centering or z-standardization or divide mean by 2 

standard deviations for the continuous predictors (to help with model estimation). Centering 

has several advantages, for example, it can help us interpret the intercept of the model. For 

instance, when using the previous trial's reaction time (RT) to predict the current trial's RT, 

an unstandardized previous trial RT would mean that the intercept represents the current 

trial's RT when the previous one is zero. However, if the predictor is standardized, the 

intercept is the current trial's RT at the mean of the previous trial's RT. Also, centering (of 

which standardizing is one variant) is essential to make interactions interpretable and avoid 

so-called nonessential multicollinearity (Astivia & Kroc, 2021; Dunlap and Kemery, 1987; 

Marquardt, 1980; also see this blog post by Philipp Masur). Note that different types of 

centering exist, such as grand-mean centering and group-mean centering, which will change 

the interpretation of the coefficients (see Enders, & Tofighi, 2007). 

3. Running the model 

3.1. Model specification and random effects 

As a general guideline, we strive to follow the approach of fitting maximal models (in the 

sense of Barr et al., 2013), i.e., including all random intercepts, slopes, and correlations 

justified by the experimental design/the data structure. 

 

We are aware that there is a possible trade-off between Type 1 errors (fitting maximal 

models should avoid inflated Type 1 errors; Barr et al., 2013) and Type 2 errors (maximal 

models can reduce power if they are too complex given the data, see Matuschek et al., 

2017). In our studies, we are often more concerned about not inflating Type 1 error than 

about inflating Type 2 error and thus maximal models appear to be an appropriate default 

strategy. Furthermore, the increase in inflating Type 1 error seems to be much much bigger 

than the possible loss in power: Based on our own simulations, as well as the work by others 

like Barr et al. and Matuschek et al., inflating Type 1 errors by 1000 % [sic!] due to omission 

of random effects is quite likely while (e.g., the p value is 10 times too small) the maximum 

drop in power due to an overly complex random effect structures never seems to be larger 

than about 10% (e.g., the power drops from .8 to .72) 

 

However, if in a specific study, we prefer a different trade-off, we will make this explicit in the 

pre-registration of that study. A possible scenario might be the following: We test for a 

certain effect and it is not significant. However, the model is potentially too complex. In this 

context, the burden is to try and show as convincingly as possible that the effect is indeed 

not significant. Therefore, one could remove the random slope for the fixed effect of interest 

and see whether one still obtains a non-significant result. If it is still non-significant, we would 

https://pubmed.ncbi.nlm.nih.gov/31488914/
https://psycnet.apa.org/record/1988-06430-001
https://amstat.tandfonline.com/doi/abs/10.1080/01621459.1980.10477430
http://philippmasur.de/blog/2018/05/23/how-to-center-in-multilevel-models/
https://doi.org/10.1037/1082-989X.12.2.121
https://www.sciencedirect.com/science/article/pii/S0749596X12001180
https://www.sciencedirect.com/science/article/pii/S0749596X12001180
https://www.sciencedirect.com/science/article/pii/S0749596X17300013
https://www.sciencedirect.com/science/article/pii/S0749596X17300013
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be quite convinced that this non-significance is not due to a loss in power caused by an 

overly complex random-effects structure of the maximal model. 

 

For clustering variables (e.g., subjects, items), a minimum of 5 levels (e.g., 5 subjects) 

should be available (better more, e.g., > 30); otherwise, we add these clustering factors just 

as fixed effects, as commonly recommended. 

 

For control/nuisance variables, we try to add random slopes where appropriate. However, if 

we have convergence issues, we may opt to not add them as random slopes in order to 

reduce model complexity (but in such a case we will refrain from reporting and interpreting 

the associated p-value as it likely suffers from inflated Type 1 error; see Barr et al., 2013). 

 

3.2. Addressing convergence and singularity warnings 

3.2.1. Convergence warnings in R’s lme4 

 

In case of convergence warnings, we attempt the approaches listed below, typically in the 

order in which they are listed (these steps are based mainly on recommendations by Ben 

Bolker/the lme4 team and Barr et al., 2013). For each step, we check whether it resolves the 

convergence issues.  

Before going through the listed steps, some of us would always set the optimizer to bobyqa 

as default via optimizer = c("bobyqa")(since it has been suggested that it might work 

better for the kind of data that we typically have in psychology) and/or switch off the 

calculation of the gradient and Hessian via control = [g]lmerControl(calc.derivs 

= FALSE); these settings might already resolve the convergence issues. 

 

1. We increase the number of iterations to the maximum. 

2. We use the estimates from the previous (non-converged) fit as our new starting 

values. 

3. We compare the estimates of different optimizers (e.g., using allFit()); if different 

optimizers give highly similar estimates (even if they give convergence warnings), the 

convergence warnings can be considered false positives. If many of the different 

optimizers give a singularity warning, it might be an indication the convergence 

warning is the result of a singularity warning. 

4. We follow the steps suggested in Ben Bolker’s blog post: 

a. Center independent (and dependent) variables instead of scaling (or vice 

versa); rescale the independent variables. 

b. Robustness check: Check whether certain random correlations are close to 

+/-1 and/or certain random slope variances are close to 0. If yes, remove 

those; afterwards check whether the estimates are still the same. Note that 

removing random slopes might severely inflate Type 1 error rates! 

c. Double check gradient calculations: Check the (parallel) minimum of the 

absolute and relative gradients. If those gradients are > 0.001, gradient 

calculation is likely not a problem. 

https://stats.stackexchange.com/questions/37647/what-is-the-minimum-recommended-number-of-groups-for-a-random-effects-factor
https://www.sciencedirect.com/science/article/pii/S0749596X12001180
https://www.sciencedirect.com/science/article/pii/S0749596X12001180
http://rpubs.com/bbolker/lme4trouble1
http://rpubs.com/bbolker/lme4trouble1
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When speaking of singularity warnings, in simple terms this indicates that the model has 

estimated the variance of a random effect as 0 (in the case of random slopes and random 

intercepts) or a random correlation as 1/-1. For the more complete and technical term and 

explanation, please see Bolkers FAQ. In simpler models, the cause of singularity warnings 

can be checked by simply inspecting the random variances and correlations after running 

the model. However, in more complex models, inspecting will sometimes not show the 

singularity warning. Therefore, in principle, it is recommended to use the rePCA() function 

from lme4 (see Bates et al., 2015).  

 

After identifying a singularity warning and the potential cause, there are different approaches 

and much discussion on how to deal with singularity warnings (or not do much anything 

about them at all), also outlined by Bolker. Please also check out the more unbiased list of 

options provided there. 

 

Here, we present an approach that prioritizes avoiding underfitting / inflated Type 1 error 

rates by simplifying the model in steps: Underfitting a linear mixed-effects model can 

severely inflated Type 1 error rates (e.g., Barr et al., 2013), whereas overfitting in extreme 

cases can reduce power up to 12% (Matuschek et al., 2017). This approach is what works 

best for some of us and could be considered: 

 

1. We drop random correlations for one random grouping factor at a time (in the case 

there are multiple random grouping factors in the model). If the singularity warning is 

no longer present after dropping one or all random correlations, we use/interpret that 

model. Else, we continue to the next step. 

2. We check the model (without random correlations) using lme4::rePCA() to 

determine the effect with the smallest variance and remove this from the model. If 

two variances are equally small, we start with the higher-order variance. Then, we 

check if the simplified model still gives a singularity warning and use a likelihood ratio 

test (LRT) to test whether the model fit becomes significantly worse, using an alpha 

level of .2 as recommended by Matuscheck et al (2017). 

a. If the simplified model gives no singularity warning and the LRT is not 

significantly worse, we use/interpret that model. 

b. If the simplified model gives no singularity warning and the LRT is significantly 

worse, indicating a worse fit for the simplified model, we do not simplify the 

model and instead use the more complex model and accept the singularity 

warning. This is also recommended by Singmann, H., Kellen, D., Spieler, D. 

H., & Schumacher, E. (2019, New methods in cognitive psychology). 

c. If the simplified model still gives a singularity warning (and the LRT is not 

significantly worse), we repeat this step 2 by again identifying the smallest 

variance using rePCA(). 

3. Lastly, always compare the results of the simplified model and the maximal model 

and report both of them (with the maximal model in the supplementary materials for 

example). If the results diverge, please interpret the results with caution, keeping in 

mind that the simplified model might suffer from inflated Type 1 errors and/or the full 

model might suffer from inflated Type 2 errors (e.g., similar as you would interpret 

results that differ in their interpretation when including versus excluding outliers). 

 

http://bbolker.github.io/mixedmodels-misc/glmmFAQ.html#singular-fits
http://bbolker.github.io/mixedmodels-misc/glmmFAQ.html#singular-fits
https://arxiv.org/abs/1506.04967
http://bolker/
http://bolker/
https://doi.org/10.1016/j.jml.2017.01.001
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If the above steps don’t work, we try further model simplifications: 

1. We drop additional random effects in the following order: random correlations, 

random slopes of covariates (where significance is of no interest), random intercepts 

(“0+” instead “1+”) (following Barr et al., 2013). Whenever possible, we never remove 

the random slopes of the variables of interest (i.e., the ones for which we want to 

conduct significance tests). 

Please note that removing random correlation terms can be tricky if random slopes 

are estimated for factors with 3 or more levels. In that case, it is probably easiest to 

use afex::mixed() with expand_re = TRUE (an alternative option is to create 

manually the relevant contrasts yourself and add them as predictors to your model, 

which allows you to suppress the random corrections using the double pipe symbol 

||). 

2. We try to run separate analyses: For example, one model to only test the fixed and 

random effect of A (with fixed effect of B present); then one model to only test the 

effect of B. 

If we really have to drop random slopes, we follow the next step: 

3. We follow the PCA approach suggested by rePsychLing (see Bates et al., 2015) 

that is performing a PCA on the random effects and following the guidelines 

described in the paper (note that this is similar to what we described above but in 

principle, here we might simplify to a more extreme extent than above).  

a. We use a likelihood ratio test to test whether the model fit becomes 

significantly worse. As we prefer a more conservative approach here (i.e., 

rather err on the side of keeping too many random effects; we prioritize 

avoiding inflated Type 2 errors for this kind of decision), we use larger alpha-

level of .2 (Matuschek et al., 2017). 

b. Alternatively, we suggest an Information criterion approach to avoid using a p-

value for our inclusion/exclusion decision, but choose the best model based 

on the Bayesian Information Criterion (BIC) or Akaike Information Criterion 

(AIC). 

 

As a last resort, we might use: 

● Two-stage regression  

(also called summary statistics approach, e.g., Gelman, 2005):  

Estimate a separate linear/logistic regression per participant, extract the regression 

coefficients, perform a one-sample t-test (or a two-sample t-test if testing for group 

differences) to test whether a certain regression coefficient is significantly different 

from zero on a group level.  

○ This approach constitutes a special case of mixed models with stronger 

assumptions, i.e., all participants are assumed to provide equally reliable 

estimates and none of them is an outlier. Also, no shrinkage to the group-

level mean is applied in such a case. See, e.g., this comparison of both 

approaches by Eshin Jolly. 

○ This approach is very common in fMRI analyses. 

○ As a slightly more sophisticated variant of the same idea, a meta-analysis 

approach can be used to conduct the test across the per-participant 

regression coefficients, for example using the metafor package. The 

https://www.sciencedirect.com/science/article/pii/S0749596X12001180
https://arxiv.org/abs/1506.04967
https://www.sciencedirect.com/science/article/pii/S0749596X17300013
https://www.cambridge.org/core/journals/political-analysis/article/twostage-regression-and-multilevel-modeling-a-commentary/169E482D48466654556439FEC9EA6EA0
https://eshinjolly.com/2019/02/18/rep_measures/
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advantage is that this approach also carries forward the uncertainty (i.e., 

standard errors) from the first level (akin to meta analysis). 

● Sandwich estimator 

See e.g. the Huber-White sandwich estimator provided by the merDeriv package 

using the sandwich package. 

3.2.2. Or we choose a Bayesian approach 

As an alternative to addressing convergence and/or singularity issues within lme4, we 

instead fit the same model with brms and compare its estimates to the lme4 estimates of 

the maximal model (i.e., the one with the singularity and/or convergence warning). Often, our 

main interest is in the fixed effects and in our experience, the conclusions of the brms model 

(e.g., in terms of which fixed effects are “significant” or not) are identical to the conclusions of 

the lme4 model, which we interpret that we can trust the lme4 results. But similarity checks 

can also be done regarding all the different parameter estimates. Thus, brms can be used to 

check and verify an lme4 model with convergence and or singularity issues. As a matter of 

fact, though, many if not most people in our lab have moved to brms as their main 

framework for conducting mixed-effects analysis, so the convergence/singularity warnings of 

lme4 have become less of an issue for many of us. 

 

In brms, in our experience, there are far fewer issues with estimation (i.e., far fewer 

warnings that in lme4); nevertheless to make sure the brms model/results can be trusted, 

we investigate the convergence of chains by at least checking the following (please note that 

a section on more general model diagnostics follows further below): 

 

1. Trace-plots of the brms chains: plot(model) 

a. Did the chains converge (no change of variance across time & chains look 

like fat caterpillars)? 

b. Are the posterior distributions of the parameters of interest approximately 

normal and unimodal? 

2. Are the Rhats (also sometimes spelled R-hat) reported in summary(model) 

between 0.99 and 1.01? (More recently, there seem to be no values below 1, so the 

criterion becomes just that Rhat should be smaller than 1.01) 

3. Are tail and bulk n-eff (“ESS” in summary output) big enough (bulk n-eff should be 

bigger than 100 times the number of chains (warnings will be provided if they are 

very low)? 

4. Are no other convergence warnings issued (e.g. exceeding maximum tree-depth, 

divergent transitions)? If there are, check the Stan Manual convergence guide. 

 

A more extensive tutorial on model-checking by Rens van der Schoot, provides additional 

information on how these things can be checked and what else might be worth investigating. 

In case of influential observations, instead of removing them, changing the model family 

(blog post by Solomon Kurz) provides a more robust alternative (see above). 

https://www.jstatsoft.org/article/view/v087c01
https://www.jstatsoft.org/article/view/v087c01
https://cran.r-project.org/web/packages/sandwich/sandwich.pdf
https://cran.r-project.org/web/packages/sandwich/sandwich.pdf
https://statmodeling.stat.columbia.edu/2019/03/19/maybe-its-time-to-let-the-old-ways-die-or-we-broke-r-hat-so-now-we-have-to-fix-it
https://mc-stan.org/misc/warnings.html#bulk-ess
https://mc-stan.org/misc/warnings.html#bulk-ess
https://mc-stan.org/docs/2_20/reference-manual/convergence.html
https://www.rensvandeschoot.com/tutorials/wambs-checklist-in-r-using-brms/
https://solomonkurz.netlify.app/blog/2019-02-10-bayesian-robust-correlations-with-brms-and-why-you-should-love-student-s-t/
https://solomonkurz.netlify.app/blog/2019-02-10-bayesian-robust-correlations-with-brms-and-why-you-should-love-student-s-t/
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3.2.3. Mixed Models in Python 

While R is the predominant tool for conducting mixed-effects models in our lab, thanks to its 

user-friendly packages lme4 and brms, there are also viable alternatives available in 

Python, which some of us use. 

 

The first option is statsmodels, a comprehensive library that encompasses a wide array of 

commonly used statistical tools beyond mixed-effects models. However, statsmodels offers 

support only for the binomial and Poisson distributions for generalized mixed-effects models. 

The second option is Bambi, which, much like the popular brms package in R, adopts a 

Bayesian approach for parameter estimation. Bambi stands out by supporting a diverse 

range of distributions, including Wald, beta, gamma, and more. However, it lacks the 

capability to estimate the covariance matrix of random effects, which means that correlations 

between different random effects cannot be assessed. In terms of model-fitting speed, 

Bambi offers slightly faster performance compared to brms. 

 

For more information, you can refer to the following links: 

• https://www.statsmodels.org/stable/mixed_linear.html  

• https://bambinos.github.io/bambi/  

3.2.3. Mixed Models in Julia 

Because Julia's most significant advantage is its high performance, we might consider using 

MixedModels in Julia (currently, we do not have much experience with it in our lab). For 

more information, see also these links: 

● https://github.com/RePsychLing/MixedModels-lme4-

bridge/blob/master/using_jellyme4.ipynb 

● https://github.com/JuliaStats/MixedModels.jl/   

● https://github.com/palday/JellyMe4.jl  

3.3. Important notes/considerations 

3.3.1. Families/ distributions and link functions 

When residual scores are non-linear, heteroskedastic or non-normally distributed, a linear 

model fit is likely to be poor. For example, approximating count data with a ‘standard’ 

regression model likely yields poor model fit. In such situations, we typically do not use (non-

linear) transformations of the ‘raw’ dependent variables. Instead, we recommend relying on 

generalized linear models that better approximate the observed distribution. It's important to 

note that if our model includes continuous predictors, some authors recommended to apply a 

log transformation to both the predictors and the dependent variable. This transformation is 

argued to facilitate the interpretation of the regression coefficients, indicating the percentage 

change in the predictors and how this relates to the percentage change in the DV (see this 

blog post). While this sounds relevant and appealing, at the moment, not many of us have 

adopted this approach (yet?). 

  

https://www.statsmodels.org/stable/mixed_linear.html
https://bambinos.github.io/bambi/
https://github.com/RePsychLing/MixedModels-lme4-bridge/blob/master/using_jellyme4.ipynb
https://github.com/RePsychLing/MixedModels-lme4-bridge/blob/master/using_jellyme4.ipynb
https://github.com/JuliaStats/MixedModels.jl/
https://github.com/palday/JellyMe4.jl
https://statmodeling.stat.columbia.edu/2019/08/21/you-should-usually-log-transform-your-positive-data/
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3.3.1.1. Deciding on a family 

 

Ideally, the choice of which distribution to use should be based on theoretical ideas, not 

statistical measures of fit – or even worse, based on the statistical significance of predictors. 

That is, some outcome variables can be reasonably expected to not follow a normal 

distribution. For example, dichotomous outcomes are usually modeled with a binomial 

distribution.   

 

If there are multiple candidate distributions that might be appropriate, but we are not sure 

which one to use, we normally fit the same model with the different distributions separately 

and select the one that shows the best fit to the data. When using brms, we use the 

pp_check() function to run posterior predictive checks, allowing us to examine the fit 

between what the model predicts and the observed data. Alternatively, one could use AIC, 

BIC, or some other deviance measure (looic, waic or DIC for Bayesian estimation) for model 

comparison. To confirm that the model with the best fit is healthy, we check the model 

diagnostics (see section 4). 

• See also this shiny-app by Jonas Lindeløv for a demonstration of the various 

distributions in brms that can be used to model reaction times.  

• Real-world data do not always adhere to a normal distribution, often exhibiting right 

or left skewness. In psychological research, it's commonly observed that reaction 

times (RT) are right-skewed, while normal distributions are symmetric and ill-suited 

for modeling skewed data. In this context, two options present themselves.  

The first option involves comparing different distributions, such as the Wald or log-

normal distributions, as discussed in Jonas Lindeløv's blog, using methods like 

pp_check(), AIC, or BIC for evaluation.  

The alternative approach is to adhere to the normal distribution model. As highlighted 

in a blog post by Andrew Gelman, the assumption of normality may not be critically 

important. If the data exhibit slight skewness, employing a normal distribution model 

may not significantly impact the validity of statistical inferences drawn from 

regression coefficients. The primary effect of deviating from normality pertains to the 

generation or simulation of new data based on the model. Both approaches 

mentioned have their merits and are not inherently correct or incorrect. However, it's 

important to note a specific consideration related to psychological theories, such as 

Donders' Subtractive Method, which often posits a linear relationship between 

predictors/task manipulations and reaction time. When employing distributions like 

gamma or Wald, which typically require a non-linear link function, this assumed linear 

relationship may be compromised. This deviation from linearity is a crucial factor to 

consider, as it could impact the interpretation and applicability of such models in light 

of psychological theories that predict linear dynamics. 

3.3.1.2. Some commonly used families per DV type along with their respective 

following link functions 

● Continuous 

o Gaussian (default).  

■ Link functions: The Gaussian distribution link function is ‘identity’. 

■ Examples: amount of money offered/returned, some 

psychophysiological measures, quasi-continuous rating-scales (i.e. 

http://lindeloev.net/shiny/rt/
https://statmodeling.stat.columbia.edu/2023/12/12/who-cares-about-the-normal-assump-i-dont/
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with many > 10 levels), speeded reaction times (without long tail) 

Robust alternative: Student. 

o (Shifted) lognormal / ex-gaussian / skewed normal.  

■ Link functions: Exponential function or squared function since these 

distribution require all positive input. 

■ Examples: for skewed data such as reaction times, skin conductance 

responses, quasi-continuous rating-scales 

● Categorical / Ordinal/ Counts with defined maximum 

o Bi- or multinomial/ Bernoulli.  

■ Link function: inverse logit function and probit function. Inverse logit 

function has lower chance of having an numerical error. 

■ Examples: binary choice (approach/avoid; LL/SS; risky/sure, 

ambiguous/unambiguous); multinomial choice (healthy, neutral, 

unhealthy foods). 

o Cumulative. Examples: for ordinal data such as height (low/medium/high), 

size (small/medium/large), attractiveness (unattractive/neutral/attractive), 

rating-scales with few levels. 

● Counts without maximum 

o Poisson.  

■ Link function: Exponential function, squared function, and softplus 

function. 

■ Examples: number of books sold within a week 

o Negative binomial  

■ Link function: Exponential function, squared function and softplus 

function. 

■ Examples: Negative binomial distribution is similar to the Poisson 

distribution. The major difference is that the negative binomial allows a 

separate standard deviation parameter whereas for a true Poisson 

distribution, the mean is identical to the standard deviation. 

 

See also the documentation of the family() and brmsfamily() functions. Based on 

more anecdotal evidence from our lab, beta-binomial distributions seem to work well for us 

for data bound between 0 and a maximum (e.g., rating data). Particularly for rating data, see 

also this helpful post here (on using zero-inflated beta models): 

https://mvuorre.github.io/posts/2019-02-18-analyze-analog-scale-ratings-with-zero-one-

inflated-beta-models/  

 

Ordered beta regression, a more recently developed model, may also be suitable for rating 

data, and may in some cases be superior to zero-one inflated beta regression because the 

ordered beta regression has fewer parameters and can be more easily interpreted (Kubinec, 

2022). 

 

The distributions mentioned previously apply to cases where data are not censored, but 

often our data may be censored. For example, in risky decision tasks like the BART (Balloon 

Analogue Risk Task) and the CCT (Columbia Card Task), a trial may be terminated due to a 

balloon explosion or turning over a loss card, which are examples of censored data. This is 

because the subject might have attempted to inflate the balloon more times or turn over 

https://cran.r-project.org/web/packages/brms/vignettes/brms_customfamilies.html
https://mvuorre.github.io/posts/2019-02-18-analyze-analog-scale-ratings-with-zero-one-inflated-beta-models/
https://mvuorre.github.io/posts/2019-02-18-analyze-analog-scale-ratings-with-zero-one-inflated-beta-models/
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more cards, but had to stop due to the exploding balloon/turned over loss card. Bayesian 

approaches, such as brms, may be more suitable for modeling censored data. Indeed, in 

our lab, we typically model data with the “hot” CCT as censored using brms (see, e.g., 

Schaefer et al., 2023; note that this paper also links to an OSF repository with a detailed R 

script). 

In addition, data might also sometimes be truncated, e.g., follow a normal distribution that is 

bounded at a lower and/or higher level (e.g., the CCT data are truncated at 0 at the lower 

level and at 32 at the upper level); brms allows to model data as truncated if one wishes to 

do so (model estimation can become difficult, though, in our--admittedly rather limited—

experience). 

3.3.2. Estimation method: ML versus REML versus Bayesian 

This is how we decide which estimation method to use: 

● Bayesian versus (RE)ML: 

We have differing preferences in our lab and thus the individual pre-registrations will 

describe which approach each project will use. Some pros and cons involve that 

Bayesian methods are more flexible (e.g., in terms of available families or 

multivariate models, censoring, truncation, monotonic predictors, etc) but can be 

more time-consuming. Also, brms can usually fit models that are difficult to fit without 

convergence and/or singularity issues in lme4. 

An important feature of brms is its capability to estimate complex multivariate 

models, which offer more than just insights into the correlation between different 

dependent variables. For instance, in a scenario where a model incorporates both an 

individual's risky preference and intertemporal choice as DVs, brms' multivariate 

modeling can elucidate the correlation between these two aspects of decision-

making. Additionally, it goes further by providing the correlation between the effects 

of shared predictors of the risky preference model and those of the intertemporal 

choice model on the respective DVs. This functionality can be used to enhance our 

understanding of how different factors and preferences may be interrelated, allowing 

for a more holistic analysis of decision-making processes. We have found that this 

feature can be particularly useful for studying individual differences. 

● ML versus REML: 

The default in lme4 is REML and we use it unless we have good reasons to use ML 

instead (e.g., if we intend to use likelihood ratio tests). Since there is a debate about 

whether ML or REML is more advantageous, in the future, we might change our 

position. 

 

3.3.3. Priors when using a Bayesian approach 

In a Bayesian approach, it is necessary to specify priors. In general (and simplifying things), 

there are two groups of people with different views on priors. Subjective Bayesian 

statisticians argue that each study should have its own custom prior which is selected based 

on personal beliefs or previous studies. This type of prior is often informative which contains 

a lot of information about parameter values. In contrast, the second group proposes priors 

should be chosen using objective criteria (e.g., the prior should have minimal impact on the 

parameter estimation). The latter group has introduced the concept of "default priors," which 
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are commonly employed as the default priors in software packages like brms. This type of 

prior is uninformative or weakly informative which means it provides zero or little information 

to the parameter values. There is no definitive superiority between these two perspectives; 

users should choose the one that best aligns with their research goal. In the following 

section, we will discuss considerations for using different priors. 

Default priors 

brms provides default priors that are weakly regularizing, which means that they somewhat 

constrain the possible parameter space to rule out vastly implausible parameter values, but 

do not comprise much commitment about the specific parameter values that we would 

expect. Using default priors is generally safe to do and they will not provide you with wrong 

conclusions in most cases. Using them might be a good idea if there is no information about 

the parameter space.  

 

Please be aware that you must not use the default priors if you want to compute Bayes 

factors; you need informative priors for that (see section 1.4.1 and the Appendix for a more 

elaborate discussion on why this is the case, and why some of us generally do not use 

Bayes Factors) 

Custom priors  

If there is anything that one can a priori say about the parameter space (which in most cases 

is possible and easier than it might appear), it is often a good idea to specify custom priors, 

which can be tested for their implications by performing prior predictive checks. Specifying 

custom priors is especially useful when a previous study already provided data (such as in 

direct replication studies), in which case the posterior of the previous study can be used as 

the prior of the new study. In principle, custom priors are chosen to be conjugate to the 

likelihood function. The conjugation prior means the prior distribution and posterior 

distribution is identical for the likelihood distribution. For example, in Gaussian linear 

regression, the conjugate prior for the mean parameter is Gaussian, while for the standard 

deviation parameter, it is the inverse gamma distribution. For fixed effects, normally 

distributed priors are often a good choice, while for random effects, priors with heavier tails 

(e.g., Cauchy or Student-t distributed) might be more appropriate.  

 

In our lab, we have different opinions about the use of default versus custom priors. 

Therefore, we prefer not to commit generally to one or the other and will specify this in the 

individual study pre-registrations. As a general rule, if in doubt, we use weakly regularizing 

priors (e.g., the default priors in brms). If we use custom priors, we check whether the 

different prior specifications lead to different results by comparing them to weakly 

regularizing (default) priors. 

3.3.4 MCMC Iteration number for Bayesian approach 

In MCMC sampling, samples exhibit a high degree of correlation with neighboring samples. 

The Effective Sample Size (ESS) represents the true number of independent samples, 

adjusting for this correlation. Determining an adequate ESS for accurately and reliably 

representing the posterior distribution is still debated. John Kruschke in "Doing Bayesian 

Data Analysis" suggests that an ESS of about 10,000 might be necessary for a precise 

https://github.com/paul-buerkner/brms/issues/131#issuecomment-253301079
https://github.com/julianquandt/brms-intro-SIPS2019
http://arxiv.org/abs/1904.12765
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estimate of a posterior distribution, potentially requiring upwards of 50,000 raw MCMC 

samples. However, for estimating central tendencies—such as the mean, median, or 

mode—of the MCMC samples, such a substantial ESS might not be essential. Thus, 

thousands of MCMC iterations may suffice for accurate parameter estimation. Yet, for 

significance testing involving the use of the Highest Density Interval, more than 50,000 

MCMC iterations are recommended. If time (and computational ressources) allow, we try to 

go for relatively large number of iterations, typically. 

4. Model Diagnostics 

In terms of diagnostics, there are many things one could possibly do. As a rule of thumb, we 

typically, at minimum, look at the following plots: qq-plots and/or density plots of residuals, 

and predicted versus observed values to check for things like outliers, violations of linearity, 

homoskedasticity, and normality (where appropriate). Additional diagnostics aspects often 

worth checking include multicollinearity (e.g., checking the variance inflation factors) and 

influence diagnostics (e.g., via lme4’s influence function). Since in mixed models we have 

grouped data, it is also a good idea to check, e.g., things like normality not just overall, but 

also per “group” (e.g., per participant), which can help identify, e.g., whether some 

participants seem to have unusual data, etc. 

Note that we always perform our diagnostics on the model residuals, not the raw data.  

If there are statistical (numeric) versus visual ways to inspect the data, we usually prefer 

visualization. For example, commonly used tests like Kolmogorov-Smirnov tests are not 

appropriate for large enough datasets, and small p-values in such tests might be misleading 

when testing assumptions. For Bayesian models, residuals are perhaps a bit of an unusual 

concept, but one can compute residuals for brms models and then do the same diagnostics 

as for an lme4 model, if one wishes to do so (except for the VIF, a recent search showed 

that brms developer Paul-Christian Buerkner recommended to fit the model in lme4 to 

compute the VIF, since it’s not implemented in brms; this seems a valid suggestion, since 

the VIF is concerned with the predictors, not the DV or other model aspects). 

 
Typically, we first address convergence and singularity warnings, before we look into the 

typical model diagnostics. That being said, as recommended by authors such as the lme4 

developer team or Dale Barr, it can also make sense to first check whether estimation 

problems might be caused by, e.g., unusual data points. We recommend to check 

diagnostics in the following order, since fixing the former ones will often also fix the latter 

ones (based on a suggestion by Ben Bolker): 

1. Outliers and influential cases (in case we remove data due to them being outliers or 

influential, as a default we report the results both with and without these data points 

and discuss discrepancies in the conclusions) 

2. Non-linearity 

3. Homoscedasticity 

4. Normality 

5. Plot fitted vs. observed 

 

For more details on how these are implemented in code, check the Appendix. 

For the very handy package performance, containing many automated plots for model 

diagnostics, see, e.g., this vignette. 

https://stats.stackexchange.com/q/189116
https://easystats.github.io/performance/index.html
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Note that if we run generalized linear mixed-effects models, some of the assumptions may 

not apply. For instance, for a model with a binomial or Bernoulli family, we do not have the 

normality and homoskedasticity assumption. We do check for influential cases and for the 

difference between the fitted and observed data. We also check for linearity, but only for the 

transformed relation between the dependent and independent variable (which for the 

Bernoulli family is on the log-odds scale). Not all diagnostics functions for linear mixed-

effects models work for generalized linear mixed-effects models. The DHARMa package 

works for some generalized linear mixed-effects models; see the linked vignette for a list of 

models and for example code. To the best of our knowledge, however, for some other 

models, such as ordinal models, we currently have rather limited diagnostics options. It is 

always possible, however, to compare the fit between fitted and observed data (e.g., using 

pp_check() in brms).  

5. Inferring significance (p-values, CIs, Bayesian) 

5.1. Frequentist approach (ML/ REML) 

When using a frequentist approach, we typically obtain Type-III p-values in one of the 

following ways (see also, e.g., Luke, 2017; but see also Barr et al., 2013 showing that 

likelihood ratio tests seem trustworthy). In the pre-registration of an individual project, we 

determine beforehand which method we are using. Since methods sometimes fail, it might 

make sense to pre-register a decision tree, e.g., “we plan to use method x to determine p-

values; if that fails for technical reasons, then we use method y as fallback; etc.”. If we had to 

recommend one specific method, then most of us would recommend KR F-tests. 

● F-test with Kenward-Roger approximation for degrees of freedom: 

Run using either the Anova() function of the package car (Fox & Weisberg, 2019) 

or using the mixed() function of the package afex (Singmann, Bolker, Westfall, 

Aust, & Ben-Shachar, 2019) with option method = "KR" (if you use 

afex::mixed(), then adding the argument test_intercept = TRUE means 

car::Anova is used in the background; otherwise, it will use lmerTest; at least 

some of us have a strong preference for car::Anova over lmerTest as we have 

observed odd and obviously incorrect results from lmerTest in the past). These 

functions in turn call the KRmodcomp() function of the package pbkrtest (Halekoh & 

Højsgaard, 2014).  

● F-test with Satterthwaite approximation for degrees of freedom:        

Run using the mixed() function of the package afex with option method = "S", 

which in turn calls the package lmerTest (Kuznetsova, Brockhoff, & Christensen, 

2017).          

● (Bootstrapped) Likelihood Ratio Tests: 

Run using the mixed() function of the package afex with option method = "LRT". 

If bootstrapped with option method = "PB", this calls the function PBmodcomp() of 

the package pbkrtest. Note that LRTs are the only available option (other than t-as-z 

and Wald chi-square tests; both of which we try to avoid) to directly obtain p-values 

for models fit with glmer(). 

https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html
https://link.springer.com/article/10.3758/s13428-016-0809-y
https://www.sciencedirect.com/science/article/pii/S0749596X12001180
https://socialsciences.mcmaster.ca/jfox/Books/Companion/index.html
https://cran.r-project.org/package=afex
https://cran.r-project.org/package=afex
http://www.jstatsoft.org/v59/i09/
http://www.jstatsoft.org/v59/i09/
https://www.jstatsoft.org/article/view/v082i13
https://www.jstatsoft.org/article/view/v082i13
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● 95% confidence intervals: 

CIs can be used by inspecting whether the interval includes 0 or not. These should 

be based preferably either on bootstrapping or profiling the likelihood (both available 

via lme4). If necessary, CIs can then be turned into p-values (e.g., if a 95% CI does 

not include zero, this can be used to derive that the p-value is < .05) 

Note: whenever possible, we do not use t-as-z approaches, nor Wald chi-square tests (as 

implemented, e.g., in the Anova() function of the package car). 

5.2. Bayesian approach 

When using a Bayesian approach, we use the function brm() from the brms package 

(Bürkner, 2017) which provides an interface to Stan (Carpenter et al., 2017). A Bayesian 

model does not work with p-values to base the statistical significance of predictors on. There 

are several ways to compute null hypothesis significance testing (NHST) in a Bayesian 

framework, including the following: 

● Computing 95% posterior credible intervals (CIs) either via brms default method 

based on quantiles or HDI (Highest Density Interval; note that this is also sometimes 

referred to as Highest Posterior Density [HPD] interval). The latter are available, e.g., 

via packages sjstats, tidybayes; HDInterval, bayestestR; see this vignette by 

Makowski et al. Please be aware that emmeans computes HDI CIs, see below; it 

probably makes sense to decide on one method to compute CIs a priori and then use 

that same method throughout all the analyses of a study/project). As our decision 

rule, we check whether the CI includes 0. The quantile-based approach and HDI 

generally result in highly similar conclusions. The HDI approach is preferable in 

cases where the posterior distribution of coefficients is highly skewed. In such cases, 

the quantile-based approach may produce atypical results. 

● Computing a Bayesian “p-value” or so-called “probability of direction” based on the 

proportion of posterior samples larger or smaller than 0. This approach is strongly 

correlated with the frequentist p-value. Please think about whether you want to 

compute a one-sided or two-sided test and accordingly use the appropriate 

proportion of samples fulfilling that criterion (we typically favor two-sided tests as 

one-sided tests require ignoring even a very strong effect if it is in the unexpected 

direction).  

● Looic (leave-one-out information criterion) version of Bayes factor: Bayes factors are 

based on the model comparison between the full model and a nested model. As 

mention further up, Bayes factors require properly specified informative priors. 

However, the Looic is less sensitive to the prior and can be used as an 

approximation of a Bayes factor. This Looic version of a Bayes factor is often called 

the pseudo Bayes factor. To compute a pseudo Bayes factor, we need to compute 

the full model and the nested model looic using loo() function and then compared 

two models’ looic with loo_compare() function. Note that a full model incorporates 

all potential predictors deemed relevant for the analysis, while a nested model 

includes a subset of these predictors, implying a more simplified or specific version of 

the full model. 

● Some more hands-on in brms: we can use the command summary(‘model-

name’) to get the 95% credible interval (CI) by default. More specifically: per 

https://arxiv.org/abs/1705.11123
https://www.jstatsoft.org/article/view/v076i01
https://easystats.github.io/bayestestR/articles/credible_interval.html
https://easystats.github.io/bayestestR/articles/credible_interval.html
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predictor, we get a coefficient, its estimated error, and the lower and upper end of the 

95% CI range. If the 95% CI does not include 0, we deem an effect “significant” (i.e., 

we get a probability distribution of true values for a specific parameter; and if the 95% 

range of that distribution does not include 0, we deem it likely “enough” that the true 

value does not include 0 and call the effect significant). If we are interested in 

estimating trend effects or doing one-tailed tests (or computing any other CIs), we 

can obtain the 90% (or any other) CI by specifying summary(‘model-name’, 

prob=.90).  

● If using the package emmeans, for pairwise comparisons/simple effects of the model 

(e.g., to find out for an interaction which levels significantly differ; Lenth, 2019), we 

get as output 95% HDIs, which work the same way: if the 95% HDI does not include 

0, the pairwise comparison or simple effect is significant.  

 

There are other ways to test significance or find support for a hypothesis (see, e.g., for a 

discussion of several approaches Makowski et al., 2019). These methods also include 

Bayes Factors. For different approaches of how to compute Bayes Factors for mixed 

models, see. e.g., this tutorial by Jonas Lindeløv. However, we are currently not using Bayes 

Factors as a default method in our lab, as some of us are quite skeptical. For critical 

discussions, including many code examples, see: 

● The above-mentioned tutorial by Jonas Lindeløv 

● A series of blog posts by Richard Morey, see especially Part 2 

● A series of blog posts by Uri Simonsohn: http://datacolada.org/78a  

● Dance of the Bayes Factors by Daniel Lakens 

● The absurdity of mapping p-values to Bayes factors by Stephen R. Martin 

● An explanation of the default Cauchy prior width of r = .707 used in JASP and the 

BayesFactor package by Eric-Jan Wagenmakers 

● Why psychologists should not change the way they analyze their data: The devil is in 

the default prior by Ulrich Schimmack 

● Wagenmakers’ default prior is inconsistent with the observed results in psychological 

research by Ulrich Schimmack 

For more information on indices of effect existence and significance in the Bayesian 

framework, see Makowski et al. (2019). 

6. Post-hocs, follow-ups, simple slopes 

Sometimes, to better understand the result patterns, we further investigate main effects or 

interactions by running additional analyses. In general, we use one of two approaches for 

additional analyses, post-hoc tests or follow-up models (for some pros and cons of each, see 

end of this section).  

6.1. Post-hoc tests 

The post-hoc tests that we use typically depend on the type of our predictors: 

● For a significant categorical predictor with > 2 levels, we use the command 

emmeans() 

https://cran.r-project.org/web/packages/emmeans/emmeans.pdf
https://www.frontiersin.org/articles/10.3389/fpsyg.2019.02767/full
https://rpubs.com/lindeloev/bayes_factors
https://rpubs.com/lindeloev/bayes_factors
https://medium.com/@richarddmorey/redefining-statistical-significance-the-statistical-arguments-ae9007bc1f91
http://datacolada.org/78a
https://daniellakens.blogspot.com/2016/07/dance-of-bayes-factors.html?m=1
http://srmart.in/absurdity-mapping-p-values-bayes-factors/
http://www.cogsci.nl/forum/index.php?p=/discussion/1725/cauchy-prior-widths
http://www.cogsci.nl/forum/index.php?p=/discussion/1725/cauchy-prior-widths
http://www.cogsci.nl/forum/index.php?p=/discussion/1725/cauchy-prior-widths
http://www.cogsci.nl/forum/index.php?p=/discussion/1725/cauchy-prior-widths
https://replicationindex.com/2015/05/09/why-psychologists-should-not-change-the-way-they-analyze-their-data-the-devil-is-in-the-default-piror/
https://replicationindex.com/2015/05/09/why-psychologists-should-not-change-the-way-they-analyze-their-data-the-devil-is-in-the-default-piror/
https://replicationindex.com/2016/06/30/wagenmakers-default-prior-is-inconsistent-with-the-observed-results-in-psychologial-research/
https://replicationindex.com/2016/06/30/wagenmakers-default-prior-is-inconsistent-with-the-observed-results-in-psychologial-research/
https://www.frontiersin.org/articles/10.3389/fpsyg.2019.02767/full
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● For a significant interaction between a categorical and continuous predictor, we use 

the commands emtrends() and contrast(emtrends(), "pairwise", by = 

NULL). 

● For a significant interaction between two categorical predictors, we use the 

commands contrast(emmeans(), ‘pairwise’) and 

contrast(contrast(emmeans(), ‘pairwise’), 'pairwise', 

by=NULL).    

 

For more details and code specifics, see the Appendix. You can also specify yourself which 

contrasts you want to test/compare, see, e.g., this vignette on how to use emmeans. Also 

see this vignette on interactions in emmeans. 

 

Note that emmeans (Lenth, 2019) can be used for lme4::glm()/ afex::mixed() 

outputs as well as for Bayesian models (brms). It returns estimated marginal means per 

simple effect and can compute contrasts between them: For Bayesian models, it uses 95% 

highest posterior density or HPD intervals, while for lme4-type models, it provides p-values, 

which can be adjusted for multiple comparisons or not (adjustments for multiple tests are 

currently not available for brms models; if we want to adjust for multiple tests in brms 

models, we implement our own adjustment). Note that for brms models, the median instead 

of the mean is provided as default point estimate. The hpd.summary() function can be 

used to obtain the mean (see the Appendix for example code). For FAQs of emmeans, see 

the respective vignette. 

6.2. Follow-up models 

Another way to further investigate main effects or interactions is to run separate follow-up 

models. For example, if we find an interaction between a factor with 2 levels and/or several 

covariates, one can run 2 models, one per factor level. However, if we have an interaction 

that includes a factor with more than 2 levels, it would be necessary to run models where the 

more-than-two levels are restricted to just two levels, which means that multiple models will 

be run. Whether we adopt such a strategy of follow-up models or rather a post-hoc approach 

will be determined in the individual study pre-registration.   

6.3. General advice 

● We only run the follow-up/post-hoc tests that are relevant. We find it often sufficient 

to interpret the pattern of the interaction based on figures showing the pattern, rather 

than running many possible additional tests. In our opinion and experience, the main 

model is typically the most important one for drawing conclusions.  

● emmeans uses the model estimates for post-hoc tests, not the raw data. Therefore, 

we always check with raw data or other methods whether the results/conclusions 

from our post-hocs seem reasonable. 

● Correction for multiple comparisons can be done automatically in emmeans for lme4 

and afex models. This is not the case for brms! Thus, if adjustment for multiple tests 

is desired for brms post-hoc tests, we do this ourselves. 

● When fitting separate models for different DVs, some kind of correction for multiple 

comparisons is often warranted. In such a situation it is worth considering 

https://cran.r-project.org/web/packages/emmeans/vignettes/comparisons.html
https://cran.r-project.org/web/packages/emmeans/vignettes/comparisons.html
https://cran.r-project.org/web/packages/emmeans/vignettes/interactions.html
https://cran.r-project.org/web/packages/emmeans/emmeans.pdf
https://cran.csiro.au/web/packages/emmeans/vignettes/FAQs.html
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approaches that might mitigate inflated Type 1 errors by means other than adjusting 

p-values: Gelman, Hill, and Yajima (2012) describe a solution where the identity of 

the DV (e.g., different items or subscales in a questionnaire; when using DVs on 

different scales, it is appropriate to standardize those first) are used as a grouping 

variable. The shrinkage applied to the levels of this grouping variable will 

automatically adjust for multiple comparisons while retaining higher power. Another 

option to consider are multivariate mixed-effects models, which are quite easy to run 

in brms (and very flexible in that they allow the combination of DVs from different 

distributions, and also allow different predictors for different DVs). It is worth looking 

at the respective brms vignette. 

6.4. More considerations 

6.4.1. Omnibus vs. targeted tests 

Although this does depend on our research question, in general we are interested in specific 

effects, and thus we strive to run targeted tests (i.e., planned comparisons or contrasts) and 

not just omnibus tests (also see Baguley, 2012, for a discussion of omnibus tests versus 

planned comparisons or contrasts). That being said, this might be different for different 

projects/research questions and thus the individual project’s pre-registration will specify the 

testing strategy. 

6.4.2. Contrasts 

In general, it is often possible to modify the contrast coding (using custom contrasts) in such 

a way that the model directly tests the desired comparisons. This could make post-hoc and 

follow-up tests obsolete. For a nice treatment and tutorial, see Schad, Vasishth, Hohenstein, 

and Kliegl (2020). 

For a tutorial of how to compute contrasts with brms, see this blog post by Matti Vuorre. We 

also have our own materials (lecture slides, example R scripts) on how to generate do-it-

yourself contrasts (quite similar to the Schad et al., 2020 paper); if you are interested, ask 

Bernd. In general, we think such custom contrasts are still underused (in our lab, and in 

general). 

7. Reporting results 

7.1. In Writing 

Our reports include a description of the following parts (also see Meteyard & Davies, 2019; 

Barr et al., 2013):  

● Model specification, including: 

o Dependent variable, and all fixed and random effects (intercepts, slopes, 

correlations), both in words and possibly also by providing the model 

equation/ R-pseudo code (so-called Wilkinson notation) 

o Transformation of variables, e.g., standardizing or centering variables 

o Contrast coding (typically sum-to-zero coding) 

https://www.tandfonline.com/doi/full/10.1080/19345747.2011.618213
https://cran.r-project.org/web/packages/brms/vignettes/brms_multivariate.html
https://psycnet.apa.org/search
https://www.sciencedirect.com/science/article/pii/S0749596X19300695
https://www.sciencedirect.com/science/article/pii/S0749596X19300695
https://mvuorre.github.io/posts/2020-02-06-how-to-calculate-contrasts-from-a-fitted-brms-model/
https://doi.org/10.31234/osf.io/h3duq
https://www.sciencedirect.com/science/article/pii/S0749596X12001180
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● Inference: 

o Description of how p-values were obtained (in case of a frequentist approach) 

or what other (Bayesian) decision rule was used for inference. 

o Description of what post-hoc or follow-up tests were performed 

o Any convergence or singularity issues that may arise while running the model 

(in particular if they require adjustments in the model specification) and how 

they were dealt with should be described, as well as the subsequent 

adjustments that were made. 

● Model output, at minimum the following: 

o Model results: (un)standardized regression coefficients, standard errors 

and/or confidence/credible intervals, test statistics, degrees of freedom, p-

values (note that the latter three are only relevant in case of a frequentist 

analysis). 

7.2. Plotting 

One question when plotting is how to compute the correct standard errors from the raw data 

(as there seems to be no generally accepted solution for all cases). One can thus either 

decide to plot the model-based results, or decide to plot the raw data. Importantly, these two 

approaches do not always give the same impressions. Moreover, it might not be possible to 

compute appropriate standard errors/CIs for plotting the raw data.  

Here are some options: 

● For plotting regression coefficients (several of us find this a most informative plot, 

because it allows for comparisons across magnitudes and uncertainties of the 

different observed effects):  

○ Use SEs/CIs from the model output. 

● For plotting group/condition means:  

○ If plotting the raw data (single data points), do not plot any indicator of 

uncertainty (i.e., no CI or SE indicator), unless there is an appropriate way to 

calculate it. 

■ If aggregating raw data per condition, compute the SEs of the mean 

like in an ANOVA. 

■ When plotting the raw data for within-subjects SEs, mind that 

between-subjects variability could/should be subtracted first and an 

appropriate correction for the potential bias performed (Morey, 2008). 

This is already implemented in the summarySEwithin() command 

from package Rmisc (see e.g. this blog post by Niklas Johannes, this 

blog post by Matt Craddock on visualizing ERPs, and an associated 

discussion on an MNE Python github issue). Please be aware that this 

is not a universally accepted approach. 

○ Use model-based plots instead of plotting the raw data, e.g.:  

■ The effects package (Fox, 2003). 

■ The conditional_effects() function in brms.  

● Note here that when the model contains multiple categorical 

predictors, and one only wants to plot the effect of a single 

predictor, brms does not aggregate across levels of the other 

predictors. Instead, it will plot the effect of the predictor of 

https://www.niklasjohannes.com/post/calculating-and-visualizing-error-bars-for-within-subjects-designs/
https://www.mattcraddock.com/blog/2016/11/28/erp-visualization-within-subject-confidence-intervals/
https://github.com/mne-tools/mne-python/issues/5812
http://www.jstatsoft.org/v08/i15/
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interest at the reference level of the other categorical 

predictors. If you do want to aggregate across the other 

categorical predictors, you can use the following code: 

plot(brms::conditional_effects(modelname, 

effects = “predictor_of_interest”, conditions 

= 

data.frame(“categoricalpredictor_not_of_intere

st” = NA))) 

● Also note that by default, brms plots the medians instead of 

the means. To plot the means, add robust = FALSE)  

■ The function emmip() in the emmeans package can be used to plot 

interactions. See this vignette for examples. When working with a 

generalized linear mixed-effects model that uses a link function to 

transform the dependent variable from the response scale to a 

different scale (e.g., the log-odds scale), the emmeans package can 

back-transform estimated means and SEs/CIs to the response scale. 

This might facilitate interpretation of the effects. Note, however, that 

this back-transformation option is currently restricted to certain link 

function (e.g., logit), and might thus not work for all link functions.  

 

Note that a distinction can be made between conditional and marginal effects. More 

information can be found here from slide 321 (PDF page 346) onwards.  

7.3. A note on effect sizes 

There are no generally accepted ways to compute standardized effect sizes for mixed 

effects models, but different variants have been proposed (such as Pseudo-R2; variants of 

Cohen’s d, etc). Individual pre-registrations will specify if they want to report standardized 

effect sizes, and if so, which (and how they compute them). In addition, standardized effect 

sizes can be handy in the context of a priori power analyses. 

In the context of a recent meta-analysis (Powers, Schaefer, Figner, & Somerville, 2023), 

some of us took a deep-dive into computing standardized effect sizes in the context of 

mixed-effects models. We won’t reiterate everything here (for details, see page 791 of this 

Powers et al. paper, under section “Calculation of effect sizes” --> “Mixed-effects models”). 

For Cohen’s d-like effect sizes for mixed models, one approach is to standardize the group 

mean difference by the square root of the sum of all the random effect variances (including 

the residual variance), see Westfall et al. (2014) and Brysbaert and Stevens (2018); see also 

Pustejowski (2016). For models with a binary DV, one can transform odds ratios into 

Cohen’s d based on the formulas 7.1 and 7.2 in Borenstein et al. (2009). For further details, 

we could recommend the OSF page associated with the meta-analysis paper, where we 

have compiled the different formulas, etc: https://osf.io/t6xpb  

  

https://cran.r-project.org/web/packages/emmeans/vignettes/interactions.html
https://www.drizopoulos.com/courses/EMC/CE08.pdf
https://doi.org/10.1037/xge0000014
https://doi.org/10.5334/joc.10
https://www.jepusto.com/alternative-formulas-for-the-%20smd/
https://doi.org/10.1002/9780470743386
https://osf.io/t6xpb
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Appendix 

Connections between mixed-effects model and commonly used 

statistical tests 

Commonly used tests like t-test and ANOVA can be regarded as special cases of mixed-

effects models. Here is a tutorial about the relationship between commonly used tests and 

linear regression.  

Note that in experiment psychology, mixed-effects models are commonly applied to entire 

datasets (i.e., the unaggregated raw data), while ANOVA is typically used for data 

aggregated per participant. 

We list several of them (some connections are not included in the tutorial), 

• T-test is equivalent to a linear regression without any random effects. 

• Welch’s t-test is equivalent to a linear regression with varying standard deviation. 

• Paired-wise t-test is equivalent to a mixed-effects model with random intercept. 

• Between-subjects design ANOVA is equivalent to a linear regression without any 

random effects.  

• Within-subject design ANOVA is equivalent to a mixed effect-model with random 

slope and random intercept. 

Diagnostics 

Outliers 

● We save the standardized residuals 

sum(abs(resid(model, scaled = TRUE)) > value) / 

length(resid(model)) 

 

● As a check, some of us used the following expectation about what pattern could be 

expected (based on a normal distribution): 

o No values larger than +/- 3 (or 3.5) 

o Max. 1 % larger than +/- 2.5 

o Max. 5 % larger than +/- 2 

 

However, a recent paper suggested that assuming a parameters based on a normal 

distribution (i.e., mean and SD) to check whether a distribution is a normal distribution might 

not be optimal. Consistent with this suggestion, we agree that it often makes more sense to 

use a criterion such as median +/- 2.5 (or 3) MAD (median absolute deviation) to check this 

assumption. Note that when more than 50% of the data have identical values, the MAD 

value will be computed as zero (https://eurekastatistics.com/using-the-median-absolute-

deviation-to-find-outliers/). Although this scenario may not arise very often, some of us have 

encountered this in their data analysis. We recommend checking the distribution of data 

before using MAD to identify outliers.  

https://lindeloev.github.io/tests-as-linear/
https://www.sciencedirect.com/science/article/pii/S0022103113000668
https://eurekastatistics.com/using-the-median-absolute-deviation-to-find-outliers/
https://eurekastatistics.com/using-the-median-absolute-deviation-to-find-outliers/
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Auto-correlation 

● Use the function acf(): We would expect no significant correlations across any lags 

(no bars more extreme than the dotted horizontal lines). Beware, though, that—as far 

as we know—this function relies just on the order of the observations in the data 

frame and is thus not "aware" of (and thus cannot take into account) the clustering of 

observations in groups (such as trials clustered within participants). We have not 

found an existing function or solution to this problem (i.e., one would have to 

compute the auto-correlation within each, e.g., participant, and then average this 

correlation across participants). 

○ library(lme4) 

○ plot(acf(sleepstudy$Reaction)) # pretty dramatic 

autocorrelation in the raw data  

○ m1 <- lmer(Reaction ~ Days + (1 + Days | Subject), data = 

sleepstudy) 

○ plot(acf(resid(m1))) # no serious autocorrelation in the 

residuals 

Homoscedasticity  

● Plot of fitted values vs. residuals to check for homo/heteroskedasticity (optional: fitted 

vs. observed values) 

○ plot(model, type = c('p', 'smooth')) 

● Check the ratio between the highest and lowest variance (by visual inspection, called 

Fmax). 

● For ungrouped data (i.e., continuous predictors), heteroscedasticity is not fatal: “The 

linear relationship between variables is captured by the analysis, but there is even 

more predictability if the heteroscedasticity is accounted for. If it is not, the analysis is 

weakened, but not invalidated” (Tabachnick & Fidell, 2013, p. 85). 

● For group data (i.e., factors), for equal cell sizes (up to a ratio of 1:4), an Fmax of up 

to 10 is acceptable (Tabachnick & Fidell, 2013, p. 86). If cell sizes are very uneven 

(say 1:9) and variance larger in smaller cells than bigger cells, Fmax as small as 3 

can be associated with increased Type 1 error rates (Milligan, Wong, & Thompson, 

1987) 

Normality 

● Density plot or qq-plots of residuals to check for normal distribution: 

○ densityplot(resid(model, scaled = TRUE)) 

○ qqmath(model, scaled = TRUE) 

○ qqPlot(resid(model)) 

Influential cases 

We like to use the function: lme4::influence (package dharma for generalized models) 

to get influence statistics for formal inspection: 

● inf_model <- influence(model, "grouping factor")  

● str(inf_model)  

  

https://psycnet.apa.org/record/1987-23899-001
https://psycnet.apa.org/record/1987-23899-001
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To check for problematic values 

● Cook’s distance: cooks.distance(inf_model) 

○ values larger than 1 

○ values larger than 4/N (grouping units) 

○ Points that stand out 

■ plot(inf_model, which = 'cook', sort=T) 

 

● Dfbeta: dfbetas(inf_model) 

○ Values larger than 1 

○ Values larger than 2/sqrt(N) 

○ Points that stand out 

■ plot(inf_model, which = 'dfbetas') 

Additional quantitative and visual checks 

● Check distributions of raw data and residuals per cell (factor levels): 

○ with(dataframe, densityplot(~y | factor)) 

○ with(dataframe, densityplot(~ res_model | factor)) 

● Create xy plots for regressors separately over groups: 

○ xyplot(res_model ~ regressor, data = dataframe, type = 

c('p', 'r', 'smooth')) 

● Screen groups separately: 

○ xyplot(y ~ regressor | grouping factor, data = df, type = 

c('p', 'r')) 

○ xyplot(res_model ~ regressor | grouping factor, data = 

dataframe, type = c('p', 'r')) 

Bayesian 

Generally, we examine the same diagnostics as those described above for frequentist 

models (outliers, auto-correlation, normality, influential cases). Below, we describe a few 

additional checks that we sometimes do when running Bayesian analyses.  

Posterior predictive checks 

Some of us use posterior predictive checks to examine whether the predictions made by the 

fitted model are in line with the observed data. We often use the function pp_check() from 

the brms package for this.   

 

Influential cases 

● We use the function loo::loo to get influence statistics for formal inspection.  

● We start with: 

○ loo_model <- loo(model) 

○ print(loo_model) 

Computed from 16000 by 1758 log-likelihood matrix 

https://cran.r-project.org/web/packages/isotracer/vignettes/tutorial-100-posterior-predictive-checks.html
https://cran.r-project.org/web/packages/isotracer/vignettes/tutorial-100-posterior-predictive-checks.html
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         Estimate    SE 

elpd_loo  -6917.9 115.4 

p_loo       135.6  20.0 

looic     13835.8 230.8 

------ 

Monte Carlo SE of elpd_loo is NA. 

 

Pareto k diagnostic values: 

                         Count Pct.    Min. n_eff 

(-Inf, 0.5]   (good)     1745  99.3%   1053       

 (0.5, 0.7]   (ok)          8   0.5%   617        

   (0.7, 1]   (bad)         4   0.2%   17         

   (1, Inf)   (very bad)    1   0.1%   10         

See help('pareto-k-diagnostic') for details. 

● In the above, we see that there are 5 bad and very bad (i.e. influential) observations. 

If there are only a few of these (less than 10), we can test their influence directly by 

refitting the model once for each observation using reloo = TRUE. This can take a 

lot of time if the model-fitting takes a long time: 

○ loo_new <- loo(model, reloo = TRUE, reloo_extra_args = 

list(cores = n_cores, chains = n_chains) 

● Again we will get a table like the one above. If the resulting Monte Carlo SE of 

elpd_loo is small compared to the other SEs in the table, the influence of these 

observations is not too strong. 

● If we have too many influential observations (more than 10), loo will tell you that 

approximate loo might not work well anymore and k-fold cross validation should be 

used instead. 

● Alternatively, if we want to check robustness of our results without however many 

influential cases, we can exclude all of them at once the following way (if d is the data 

that was used during model-fitting) 

○ influential_cases <- pareto_k_ids(loo_model, threshold 

= .7) 

○ d_new <- d[-influential_cases, ] 

○ model_new <- update(model, newdata = d_new) 

Now we can see whether conclusions stay the same 

Post-hoc tests or planned comparisons code 

Below is some code that we often use to do post-hoc tests or planned comparisons. More 

examples and code can be found in the interactions vignette from emmeans.  

● For significant categorical predictors with >2 levels, we use the command 

emmeans(model-name, pairwise ~ factor_with_e.g.3levels): 

o Returns estimated marginal means (EMMs) per factor level, the pairwise 

comparisons between the 3 factor levels (e.g. level 1-2, level 1-3, and level 2-

3), returning estimates, and lower/upper end of 95% HPD intervals.   

o When using a brms model as input, the median is provided as default point 

estimate. To obtain the means, the following code can be used: 
hpd.summary(emmeans(model-name, pairwise ~ 

http://paul-buerkner.github.io/brms/reference/kfold.html
https://cran.r-project.org/web/packages/emmeans/vignettes/interactions.html#covariates
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factor_with_e.g.3levels)$emmeans, point.est = mean). To 

obtain the contrasts between the means, $emmeans should be replaced by 

$contrasts.   

o To get 90% HPD intervals, we use the command 

confint(emmeans(model-name, pairwise ~ 

factor_with_3levels), level = .90).  

● If using a response transformation, results are on the transformed scale as well. But 

if responses are on the log or logit scale (e.g., such as when using binary dependent 

variables), we can ‘back-transform’ them to the original scale using the command 
emmeans(model-name, pairwise ~ factor_with_e.g.3levels, 

type=’response’). However, note that back-transforming should be delayed until 

the end (i.e., right before reporting estimates; for more information see this 

emmeans vignette). Also note that, as described above, back-transformations are 

not (yet) available for all types of model families and link functions. 

● For a significant interaction between two categorical predictors, we can use the 

following commands. 

o emmeans(model-name, pairwise ~ factor1 | factor2)). It 

returns per level of factor 2 the significance of factor 1 (e.g., is the effect of 

factor 1 significant for each separate level of factor 2)  

o To test whether the interaction between the two factors is significant in the 

first place (which is only relevant if the direct summary output does not 

provide one with this information), we use: contrast(emmeans(model-

name, pairwise ~ factor1 | factor2)[[1]], interaction = 

'pairwise', by=NULL).  

o If one wants to do a planned comparison between specific combination of 

factor levels, we use emmeans(model-name, pairwise ~ factor1 * 

factor2)). 

● For a significant interaction between a categorical and continuous predictor, we use 

the following commands. 

o emtrends(model-name, ‘factor_with_xlevels’, var = 

'continuous_predictor'). It returns simple slopes of the continuous 

predictor per factor level, and their significance (e.g., is the continuous 

predictor significant per factor level) 

o contrast(emtrends(model-name, ~ ‘factor_with_xlevels’, 

var = 'continuous_predictor'), "pairwise", by = NULL). It 

returns pairwise comparisons between the factor levels for the continuous 

predictor effect (e.g., do the slopes differ significantly between the factor 

levels, comparing slope 1-2, slope 1-3, etc.) 

o If we want to test the effect of the categorical predictor at different levels of 

the continuous predictor, we first determine the points of the continuous 

predictor for which we want to test this. This could for instance be the mean, 

1SD below the mean, and 1 SD above the mean. We then create the 

following list: mylist <- list(continuous predictor=c(1sdbelow, 

meanlevel, 1sdabove), categorical_predictor = 

c("factorlevel1",”factorlevel2")). Next, we run the following code 

to get the simple slopes: contrast(emmeans(model-name, ~ 

https://cran.csiro.au/web/packages/emmeans/vignettes/transformations.html
https://cran.csiro.au/web/packages/emmeans/vignettes/transformations.html
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continuous_predictor * categorical_predictor, at = 

mylist), “pairwise”, by = “continuous _predictor”) 

ROPE test versus Bayes Factors to support a null effect 

As described in section 1.4.1, some of us prefer ROPE tests over Bayes Factors as method 

to quantify evidence for a null effect. Here, we elaborate on our reasons for this preference.  

A ROPE test implies defining a region of parameter values that one considers to be 

practically equivalent to the null value (i.e., a ROPE). One subsequently estimates the 

proportion of the posterior distribution or the Highest Density Interval (HDI) that falls within 

the ROPE, i.e., that is practically equivalent to the null. This is a form of Bayesian parameter 

estimation, meaning that we derive the posterior distribution to estimate the most credible 

values of a parameter (Kruschke, 2015). Bayes Factors, in contrast, are a form of Bayesian 

model comparison. In model comparison, the focus is not on estimating the parameter value, 

but on comparing the evidence the data provide for one model over the other (e.g., the null 

model over the alternative model). More specifically, one compares the marginal likelihood 

that the observed data have occurred under one model (e.g., the null model) versus another 

(e.g., the alternative model). The marginal likelihood for each model is derived by, for all 

possible parameter values, computing the likelihood that the data were generated by the 

candidate model, weighting the likelihoods by the prior credibility of these parameter values, 

and then integrating them. Crucially, because each likelihood is weighted by the prior, the 

prior is as important as the likelihood, and therefore strongly influences the marginal 

likelihood, even when the data are strongly informative (Schad et al., 2022). Therefore, 

Bayes Factors are extremely sensitive to the choice of prior distribution. This contrasts with 

Bayesian parameter estimation, in which the prior has a regularizing function, but is easily 

overwhelmed by the data. Therefore, parameter estimation, including the ROPE approach, is 

generally much more robust against changes in the prior (Kruschke, 2013; Wagenmakers et 

al., 2010).  

Thus, in order to use Bayes Factors in an informative manner, the priors should be 

selected carefully. For the null model, we may select a spike-shaped prior at an effect of 

zero. For the alternative model, a broader prior distribution should be selected that spreads 

over parameter values in a plausible way. Not having a theoretically informed expectation 

regarding the prior distributions, however, complicates the selection of a prior. One tempting 

option would be to use a diffuse, uninformative prior, that spreads prior plausibility of 

parameter values evenly across all or a wide range of values, reflecting minimal prior 

knowledge. Such noninformative priors exert only a weakly regularizing influence on the 

posterior distribution, and hence, on parameter estimation — which is why we often use 

such priors for our statistical models. In contrast, however, when computing Bayes Factors, 

noninformative priors exert a strong negative influence on the marginal likelihood of the 

alternative model. The reason for this is that a diffuse prior implies that (almost) all 

parameter values are equally plausible, including implausible values. The likelihood for 

implausible values will naturally be low, and because the marginal likelihood is computed by 

integrating the likelihood across all parameter values, this marginal likelihood will also 

decrease. Therefore, noninformative, diffuse priors will lead to a Bayes Factors that are 

biased towards the null model (Rouder et al., 2012; Schad et al., 2022; Tendeiro & Kiers, 

2019; Wagenmakers et al., 2010). Several default priors have been developed in an attempt 

to avoid this issue, such as the unit-information prior and the Jeffreys-Zellner-Siow (JZS) 

prior (Rouder et al., 2009). However, such priors are not informed by the researcher’s study 

https://nyu-cdsc.github.io/learningr/assets/kruschke_bayesian_in_R.pdf
https://psycnet.apa.org/record/2022-39838-001
https://jkkweb.sitehost.iu.edu/articles/Kruschke2013JEPG.pdf
https://www.sciencedirect.com/science/article/pii/S0010028509000826
https://www.sciencedirect.com/science/article/pii/S0010028509000826
https://www.sciencedirect.com/science/article/pii/S0022249612000806?via%3Dihub
https://psycnet.apa.org/record/2022-39838-001
https://psycnet.apa.org/record/2019-26880-001?doi=1
https://psycnet.apa.org/record/2019-26880-001?doi=1
https://www.sciencedirect.com/science/article/pii/S0010028509000826
https://link.springer.com/article/10.3758/PBR.16.2.225
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and expectations, and because of their complex, non-intuitive nature, can be misleading 

(Tendeiro & Kiers, 2019). Therefore, it has been advocated to only use Bayes Factors if one 

can meaningfully translate one’s hypothesis into a prior distribution, and otherwise use the 

ROPE approach (Kruschke & Liddell, 2018; Liao et al., 2021; Makowski et al., 2019) or even 

simply plot the posterior distribution (Tendeiro & Kiers, 2019).  

We acknowledge that although the ROPE approach is robust to the choice of prior 

distribution, it is highly sensitive to the choice of ROPE limits (Kruschke, 2011). Therefore, 

we acknowledge that the ROPE approach, to some extent, suffers from issues similar to the 

Bayes Factors approach, and does not provide a perfect solution to quantifying evidence for 

the null value. However, in many cases, both for researchers and readers, translating one’s 

expectations about plausible effect sizes to ROPE limits that are explicitly and transparently 

communicated (e.g., in a figure) may be more straightforward than translating these 

expectations to a density function used as prior, especially when the ROPE limits are 

specified on the raw response scale. Nevertheless, some arbitrariness remains in deciding 

on these ROPE limits, and we therefore often create figures displaying the proportion of the 

posterior inside the ROPE as function of the ROPE width (see the right-hand figures in this 

blog post by John Kruschke). This allows readers to decide for themselves how convincing 

they find the evidence in support of a null effect. 

Finally, although both ROPE tests and Bayes Factors are influenced by estimation 

precision or uncertainty, we believe the ROPE test to provide a more transparent 

representation of estimation uncertainty compared to Bayes Factors. The proportion of the 

posterior distribution falling within the ROPE varies with sample size. Lower precision or 

higher uncertainty, caused by, e.g., fewer data points and/or higher sampling noise, will be 

reflected by a wider posterior distribution, and hence a lower proportion of the posterior 

falling within the ROPE. By plotting the full posterior distribution in relation to the ROPE, we 

try to communicate the precision of the estimate in an explicit, transparent manner. This 

allows the reader to evaluate the confidence with which to draw conclusions for themselves. 

In Bayes Factors, although low precision or high uncertainty should in theory be reflected by 

Bayes Factors indicating inconclusive evidence, they have instead been found to result in a 

bias towards the null model, favouring the null model when they should not (Kruschke, 2013; 

Tendeiro Kiers, 2019). As sample size increases, the Bayes Factors are more likely to favour 

the alternative model (Baguley, 2012; Tendeiro & Kiers, 2019). Therefore, Bayes Factors 

have been criticized to conceal information about the uncertainty of the effect (Kruschke, 

2013).  
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